提出一种基于密度的快速离群点查找算法——Z曲线离群点挖掘算法(ZOD)。该算法通过Z曲线将空间分割成等大小的网格,并沿曲线方向对网格进行排序,将网格中的点映射到一维空间,有效克服了传统网格算法的高维问题。此外,引入局部偏离指数来衡量离群点的偏离程度,具有高精度和可度量的优点。理论分析显示,ZOD算法在性能上优于传统基于密度的算法;实验结果表明,该算法在处理高维数据时具有显著的效率和处理效果提升。
基于Z曲线的新型离群点挖掘算法研究
相关推荐
离群点挖掘研究综述
研究离群点挖掘在欺诈检测、入侵监测等领域的应用。
概述离群点挖掘在数据库领域的进展。
总结并对比现有离群点挖掘方法。
展望离群点挖掘未来的发展方向和挑战。
数据挖掘
10
2024-05-12
论文研究-基于相容关系的新型聚类算法
聚类分析是数据挖掘中的重要研究领域,传统的聚类算法通常划分为硬聚类和模糊聚类两类。提出一种基于对象集上的相容关系的新型聚类算法,通过极大相容簇对数据对象集进行分类。该算法使得同一对象可以属于不同的簇,每个簇具有独特的成员对象,从而实现了既不同于传统硬聚类也不同于模糊聚类的聚类效果。实验结果进一步验证了该算法在聚类分析中的合理性。
数据挖掘
8
2024-08-04
数据挖掘论文研究基于FP-Tree的新型频繁项集挖掘算法
在数据挖掘领域,发现频繁项集是关键问题之一。提出了一种名为FP-SPMA的新型算法,基于FP-Tree结构,通过共享前缀和前瞻剪枝,显著提升了算法效率。相较于传统方法,该算法无需递归构造条件模式树,有效压缩了事务数据库。
数据挖掘
11
2024-07-17
基于蚁群算法的离群数据挖掘新技术研究与应用
离群数据挖掘在数据挖掘中具有重要意义。利用蚁群算法的强大鲁棒性,改进了现有的聚类方法。基于此,结合聚类分析和蚁群算法的特定参数,提出了一种全新的基于聚类的离群指数定义。成功地实现了离群数据挖掘的流程,并进行了编程实现。采用这一方法对流程企业的大量历史数据进行分析,有效优化了设备运行并实现了故障预警。
数据挖掘
21
2024-07-17
一种基于蚁群算法的离群数据挖掘方法研究与应用2006年
离群数据挖掘的老问题,用蚁群算法整出了点新花样。这个 2006 年的方法,蛮有意思的,挺适合搞流程数据的朋友瞧瞧。聚类的方式不新,但它把蚁群算法的参数搞进来了,鲁棒性一下子就上去了。还定义了个新的离群指数,用起来比较灵活,跑设备数据也挺稳的。程序已经搞定了,MATLAB实现,能直接拿来流程行业的大批历史数据。你要做设备预测性维护或者异常检测,这套还挺管用的,响应也快。顺手放几条你感兴趣的资源,像蚁群算法 Matlab 源码、LOF 算法离群检测,都还不错,能配合着玩。如果你最近在折腾流程数据,或者就是想试点不同的离群检测思路,可以试试这套蚁群+聚类的组合玩法,代码也不复杂,适合上手搞点实验。
数据挖掘
0
2025-06-17
基于自组织映射的离群数据挖掘集成框架研究
针对传统基于距离的离群数据挖掘算法存在的不足,本研究提出了一种全新的基于自组织映射(SOM)的离群数据挖掘集成框架。该框架具备可扩展性、可预测性、交互性、适应性以及简明性等优势。通过实验验证,基于 SOM 的离群数据挖掘方法展现出较高的有效性。
数据挖掘
13
2024-05-25
基于距离和的孤立点挖掘算法数据挖掘与异常点识别
基于距离和的孤立点挖掘算法挺实用的,尤其在数据挖掘中找出那些与众不同的点,能更好地识别异常行为。算法的核心就是计算每个数据点与其他点的距离和,距离和越大,就越有是孤立点。这里面有个小技巧,就是需要用像欧几里得距离这种常见的度量方式,也可以用曼哈顿距离等根据需要调整。步骤也蛮,预数据、计算距离、设置一个阈值,超出这个值的就是孤立点。不过这也有挑战,计算量大时需要一些优化手段,比如 KD 树来加速计算。,这种算法能高维数据,挺适合大数据集应用。你要是需要深入理解,研究一下代码实现和数据集就能更清楚了。
数据挖掘
0
2025-07-01
NJW在离群数据挖掘中的应用研究
Web 序列模式挖掘的玩法挺有意思,WAP 算法算是老牌选手了,不过论文研究-NJW 在离群数据挖掘中的应用研究.pdf里讲了个小改进,挺实用。嗯,少了条件树那道坎,跑得快,代码也简单,适合做二次开发。
序列模式挖掘里,PrefixSpan也比较火,跟 WAP 对比着学效果更好。要是用Python撸个小工具,推荐看下Python 编程实现序列模式挖掘算法,样例清晰。
搞离群数据挖掘,别忘了性能,改算法的时候多打点日志,看看运行时间和内存。哦,对了,顺手可以看下序列模式挖掘研究综述,对比一下方法。
如果你要在生产上跑,记得条件树越少越稳,数据量大的话,不如先用PrefixSpan跑小样本测测。
数据挖掘
0
2025-06-29
一种新型全局孤立点识别方法-基于层次聚类的创新研究.pdf
针对现有的孤立点检测算法在通用性、有效性、用户友好性及处理高维大数据集的性能还不完善,提出了一种快速有效的基于层次聚类的全局孤立点检测方法。该方法利用层次聚类结果,通过聚类树和距离矩阵可视化评估数据的孤立度,并确定孤立点数量。从聚类树顶层开始,无监督地去除孤立点。仿真实验验证了本方法能快速有效地识别全局孤立点,具备良好的用户友好性,适用于不同形状的数据集,特别适用于大型高维数据集的孤立点检测。
数据挖掘
14
2024-07-16