聚类分析是数据挖掘中的重要研究领域,传统的聚类算法通常划分为硬聚类和模糊聚类两类。提出一种基于对象集上的相容关系的新型聚类算法,通过极大相容簇对数据对象集进行分类。该算法使得同一对象可以属于不同的簇,每个簇具有独特的成员对象,从而实现了既不同于传统硬聚类也不同于模糊聚类的聚类效果。实验结果进一步验证了该算法在聚类分析中的合理性。
论文研究-基于相容关系的新型聚类算法
相关推荐
基于地理位置的公交站点聚类算法研究论文
随着移动互联网和手机定位技术的进步,越来越多基于地理位置的服务(LBS)应运而生。其中,地图数据和公共交通数据对于这些应用和服务至关重要。研究了一种基于线路轨迹的公交站点聚类算法。
数据挖掘
7
2024-07-23
研究论文基于关系矩阵的关联规则挖掘算法优化
关联规则挖掘作为数据挖掘领域的重要研究方向,针对经典Apriori算法在频繁扫描事务数据库时效率低下的问题,在现有研究基础上提出了一种改进的基于关系矩阵的关联规则挖掘算法。理论分析和实验结果表明,该算法在效率和实用性上均有显著提升。
数据挖掘
17
2024-07-18
研究论文基于Hadoop的K-Means聚类算法优化与实施
针对传统K-Means聚类算法在处理海量数据时的局限性进行了探讨,特别是其对异常离群点数据的敏感性。结合Hadoop云计算平台和MapReduce并行编程框架,我们提出了一种优化方案,以改善聚类效果和处理效率。
数据挖掘
15
2024-08-14
数据挖掘论文研究基于FP-Tree的新型频繁项集挖掘算法
在数据挖掘领域,发现频繁项集是关键问题之一。提出了一种名为FP-SPMA的新型算法,基于FP-Tree结构,通过共享前缀和前瞻剪枝,显著提升了算法效率。相较于传统方法,该算法无需递归构造条件模式树,有效压缩了事务数据库。
数据挖掘
11
2024-07-17
论文研究-基于遗传的PAM算法
从给定文件的信息中,我们可以提取和总结出以下IT知识点: 1. 数据挖掘的概念与发展:数据挖掘是通过算法搜索大量数据中隐藏信息的过程,目的是为人类服务。随着数据量的急剧增长,数据挖掘成为研究热点,备受关注。在数据挖掘领域,聚类是一个核心工具,其研究具有特殊重要性。 2. PAM算法的介绍与应用场景:PAM(Partitioning Around Medoids)算法是经典的K-中心聚类算法,通过选择簇中的中心点来代表整个簇。PAM算法对异常值和孤立点有良好的鲁棒性,并能处理不同类型的数据点。尤其适用于小数据集,但对输入参数较为敏感。 3. 遗传算法的概念与优势:遗传算法是一类模仿生物进化过程的
数据挖掘
11
2024-10-10
基于Z曲线的新型离群点挖掘算法研究
提出一种基于密度的快速离群点查找算法——Z曲线离群点挖掘算法(ZOD)。该算法通过Z曲线将空间分割成等大小的网格,并沿曲线方向对网格进行排序,将网格中的点映射到一维空间,有效克服了传统网格算法的高维问题。此外,引入局部偏离指数来衡量离群点的偏离程度,具有高精度和可度量的优点。理论分析显示,ZOD算法在性能上优于传统基于密度的算法;实验结果表明,该算法在处理高维数据时具有显著的效率和处理效果提升。
数据挖掘
14
2024-09-01
基于竞争学习的HMMs聚类方法研究论文
针对当前主流数据库审计系统存在的审计信息冗余、不灵活的审计配置方式以及数据统计分析能力不足等问题,我们提出了一种创新的数据库安全审计系统。该系统可以有效约简审计信息,支持灵活的审计配置,并能够有效检测潜在的数据库攻击,为数据库安全防护提供实用的解决方案。
统计分析
9
2024-07-14
基于非参数贝叶斯模型的新型聚类算法(2013年)
聚类分析是机器学习和数据挖掘领域重要技术之一,与监督学习不同,聚类分析无需类别或标签指导,因此如何选择适当的聚类个数一直是难点。为解决这一问题,提出了一种基于Dirichlet过程混合模型的新型聚类算法,采用collapsed Gibbs采样算法对模型参数进行估计。新算法基于非参数贝叶斯模型框架,通过连续采样优化模型参数,实现自适应聚类个数。在人工合成和真实数据集上的实验表明,该算法表现出良好的聚类效果。
数据挖掘
14
2024-08-14
HPFP-Miner 新型并行频繁项集挖掘算法研究论文
HPFP-Miner是一种创新的并行频繁项集挖掘算法,针对数据挖掘中的重要基础问题进行了深入研究。该算法由陈晓云和何艳珊提出,通过优化数据扫描过程,显著提升了效率。
数据挖掘
13
2024-07-23