颜色分类leetcode获胜解决方案被评为Uni_UC_Davis_2队任务描述DMC 2016的任务是根据2014年1月至2015年9月的历史销售数据和相关退货率,预测真实匿名时尚经销商2015年10月至2015年12月的退货率。训练数据由233万个观测值组成,和14个预测变量,包括10个分类变量和4个数值变量。可以下载DMC 2016的数据集。特征工程一直是数据科学竞赛中最重要、最关键的部分。我们从几个不同的角度处理特征工程问题:聚合。我们按某些变量(例如orderID、customerID、articleID和orderDate)对数据(例如,价格、数量)进行分组。对于每组数据,我们应用聚合函数,包括均值、总和、元素数、唯一元素数等。然后我们通过将汇总数据插入到每一行中来扩展汇总数据。以下是一些示例:每个订单的总数量、每位客户的订单总数以及每件商品的平均建议零售价。解码。 ColorCode由四位数字表示,其中每个数字都有自己的含义,例如颜色、阴影和图案。因此,将**colorCo...
颜色分类leetcode-Data_Mining_Cup_20162016年数据挖掘杯第一名
相关推荐
颜色分类Leetcode与数据科学书籍推荐
颜色分类Leetcode DS-ML-书籍
该存储库包括有关数据科学、机器学习和统计方法的书籍。以下是推荐的几本书籍:
1. 《统计学习的要素 (ESL)》
作者:Trevor Hastie、Robert Tibshirani 和 Jerome Friedman
本书在一个共同的概念框架中描述了这些领域的重要思想。虽然方法是统计的,但重点在于概念而非数学。书中给出了大量示例,并使用了丰富的彩色图形。对于统计学家和对科学或工业数据挖掘感兴趣的读者来说,本书是一种宝贵的资源。涵盖内容广泛,从监督学习(预测)到无监督学习,主题包括神经网络、支持向量机、分类树和提升方法,是对这些主题的首次综合处理。
数据挖掘
9
2024-10-30
Data_Mining_课件_数据挖掘基础与应用
数据挖掘是一种从海量数据中提取出隐含的、以前未知的、潜在有价值的模式或信息的过程。这个过程通常涉及对大量数据的自动或半自动的探索和分析,发现有意义的结构和关系。随着互联网的发展、电子商务的繁荣以及各种传感器技术的进步,数据的收集和存储速度已经达到了前所未有的水平,每小时可以生成数GB甚至TB的数据。
在商业领域,数据挖掘被视为提高竞争力的关键工具。例如,在客户关系管理中,通过分析客户的购买行为、浏览历史等数据,企业能够提供更个性化、定制化的服务,从而获得竞争优势。此外,银行和信用卡交易的数据分析也有助于识别潜在的欺诈行为,保护消费者和企业的利益。科学角度来看,数据挖掘在处理如卫星遥感数据、天文
数据挖掘
13
2024-11-05
颜色分类LeetCode我最喜欢的R包
颜色分类 LeetCode:我最喜欢的 R 包整理宇宙。- 数据操作语法:用于处理分类变量(因子)的工具。- 使用图形语法创建优雅的数据可视化。- 解释字符串文字,使处理日期变得更容易。- R 的前向管道运算符。- 函数式编程工具,读取矩形文本数据和 Excel 文件。- 轻松收获(刮取)网页。- 用于常见字符串操作的简单、一致的包装器。- 简单的数据帧,使用 “spread()” 和 “gather()” 函数轻松整理数据可视化。- 用相关信息装饰 “ggplot”。- 从单一颜色创建色标。- 'ggplot2' 的简化绘图主题和绘图注释。- 以交互方式探索和可视化您的数据。- 使用字体的工
统计分析
18
2024-10-30
2012年数据挖掘技术发展概述
随着时间的推移,数据挖掘技术在2012年呈现出显著的发展趋势。
数据挖掘
12
2024-07-23
2015年数据挖掘的数学工具
2015年的《数据挖掘的数学工具》提供了深入探讨数据挖掘所需的数学工具和技术。
数据挖掘
14
2024-08-08
2021年数据挖掘趋势与技术应用
数据挖掘是从海量数据中提取有价值知识的过程,利用各种算法和统计方法揭示数据中的模式、关联和规律。在“Datamining_2021”项目中,我们聚焦于2021年数据挖掘的最新趋势和技术应用。Python作为强大易用的编程语言,因其丰富的数据处理库而在数据挖掘领域广泛应用。主要工具包括Pandas、NumPy、SciPy、Matplotlib和Scikit-learn等。Pandas提供高效的DataFrame数据结构,便于数据清洗、整合和分析;NumPy和SciPy支持数值和科学计算;Matplotlib用于数据可视化;Scikit-learn则提供机器学习各类算法。数据挖掘流程包括数据获取(
数据挖掘
8
2024-09-20
Internet-Web-Technologies-BioMedical-Data-Mining IWT数据挖掘项目
这个名为\"IWT数据挖掘项目\"的项目由NIT RAIPUR的拉胡尔·何塞(Rahul Jose)主持,专注于将互联网网络技术应用于生物医学数据挖掘。项目利用先进的网络技术和数据分析工具从大量生物医学数据中提取有价值信息,推动医疗健康领域的科研和实践。互联网网络技术涵盖一系列用于创建、维护和使用互联网的协议、标准和技术,如HTTP、FTP、TCP/IP以及HTML、CSS和JavaScript等网页开发语言。在生物医学数据挖掘中,项目涉及数据收集、数据预处理、数据分析、可视化、数据安全与隐私、Web应用程序开发、云计算与大数据处理、实时与流式数据处理以及AI与深度学习等关键技术领域。
数据挖掘
13
2024-07-23
国科大2016年数据挖掘考试试卷
国科大2016年的数据挖掘考试试卷包含多种题型和复杂的数据分析问题。
数据挖掘
14
2024-10-09
数据挖掘教程深入学习Data Mining A Tutorial-Based Primer
这本书是基于《Data Mining A Tutorial-Based Primer》翻译而来,全面介绍数据挖掘的基础知识和技术应用。书中详细解释了数据挖掘的流程及多种流行技术,特别展示了基于Excel的iDA数据挖掘工具。内容包括数据挖掘模型的建立与测试,结果的解释与验证,以及如何将数据挖掘技术应用于实际工作中。
数据挖掘
9
2024-08-24