Home
首页
大数据
数据库
Search
Search
Toggle menu
首页
大数据
数据挖掘
正文
数据仓库模型设计及数据挖掘应用
数据挖掘
17
PPT
2.54MB
2024-10-31
#数据仓库
# 数据挖掘
# 信息系统设计
数据仓库模型的设计
在设计
数据仓库模型
时,需要考虑到可用的数据。例如,为了完成
客户发展
、
收益分析
和
呼叫特性分析
这三个主题,以下三部分信息是必要的:
客户的基本信息表
客户的账单信息表
客户的呼叫信息表
2.1 数据仓库设计
相关推荐
ETL设计与数据仓库及数据挖掘的应用
设计具有可扩展性、通用性、用户友好操作界面和统一元数据管理的数据ETL系统,并在石化企业中应用。
数据挖掘
16
2024-04-29
数据仓库与数据挖掘原理及实战应用
数据仓库和数据挖掘的入门书,内容挺全的,适合刚上手或想系统回顾下这块的前端朋友。三大部分讲得蛮清楚:数据仓库怎么设计、建模、搭 OLAP;数据挖掘算法怎么跑、场景怎么落地;还有移动通信行业的案例,实战参考价值比较高。书里对星型模型、雪花模型这些结构有图解,读起来还挺顺;ETL 工具也有,像Talend、Informatica,搭配PowerDesigner建模,直接能上项目。嗯,虽然作者说还没看完,但内容确实比较系统,适合想搭建企业级数仓+系统的朋友。有点数据基础就能啃,强烈建议配合工具边看边练。如果你正好做 BI 前端或数据可视化,建议看看第二部分挖掘算法那块,能帮你更懂后端在搞啥,配合也更
数据挖掘
0
2025-06-17
利用模型预测实现分类——数据仓库与数据挖掘原理及应用
Jeff教授是否具有终身职位?分类器测试数据与未见数据。
数据挖掘
10
2024-08-21
SAS/EM数据仓库与数据挖掘原理及应用
SAS/EM数据获取工具允许用户通过对话框指定数据集名称及数据挖掘中所需变量。变量主要分为两类:区间变量(Interval Variable),用于统计处理;这些变量在数据输入阶段可设定最大值、最小值、平均值、标准差等统计指标,并检查缺漏值百分比。这些设定可在数据获取初期即进行质量检查,提供数据质量预览。
数据挖掘
14
2024-07-17
算法比较数据仓库与数据挖掘原理及应用
算法工具的横向对比挺少见的,尤其是把数据仓库和数据挖掘主流平台像Clementine、Darwin、Enterprise Miner、Intelligent Miner这些放一块来的。对你要选工具做项目还是了解各家强项,参考价值都挺高。 决策树、神经网络、回归、聚类这些主力算法,在不同平台上支持情况不一样。有的全都有,有的比如PRW,就偏轻量,支持的算法蛮少。你要是正在纠结选哪家工具,不妨看看这个对比表。 顺手给你推荐几篇蛮实用的文章,像 MapReduce 决策树研究 这篇,用大数据场景跑树模型;还有 构建决策树模型,从思路到代码讲得比较清楚,适合入门。如果你是 Python 党,可以直接上
数据挖掘
0
2025-06-14
数据挖掘应用概述-数据仓库与数据挖掘综述
数据挖掘应用比例、Data Mining Upsides、Data Mining Downsides、Data Mining Use、Data Mining Industry and Application、Data Mining Costs
数据挖掘
14
2024-07-12
数据预测数据仓库与数据挖掘原理及应用
数据预测其实挺有意思的,尤其是在做数据仓库和数据挖掘相关的工作时。你如果需要更好地理解这块,可以看看这篇《数据仓库与数据挖掘原理及应用》。它对数据预测的核心原理做了好的阐述,内容不难,挺适合入门或者有一定基础的同学。对于数据仓库的架构、数据模型的设计以及如何从海量数据中挖掘有价值的信息,文章都给出了多实用的案例。文章里的资源链接也挺有,推荐你去看看,是对你理解数据挖掘有大哦。 其中的一些技术比如数据仓库和数据挖掘,其实是当今大数据的基础。数据仓库负责把数据有条理地存储起来,而数据挖掘就是从这些数据里找出隐藏的模式。你可以想象一下,比如你要预测未来某种产品的销量,数据仓库能历史数据,数据挖掘则你
数据挖掘
0
2025-06-11
数据挖掘应用概述数据仓库与数据挖掘综述
数据挖掘应用挺广泛的,多领域都能看到它的身影。比如零售行业,通过顾客的购买习惯,可以精准推送个性化商品;金融行业则能通过数据挖掘评估贷款风险。数据挖掘有优点也有缺点,优点的话嘛,能从海量数据中挖掘出潜在价值,提升效率;不过,复杂的数据模型时有时也挺费劲,数据清理和预重要哦。 你在做数据相关的工作时,会用到数据仓库,它能存储结构化的数据,方便进行。而如果你要做更复杂的预测,数据挖掘的工具就派上用场了。常见的技术有分类、回归、聚类等等。数据挖掘的成本也挺高,尤其是需要大量计算资源时,要提前做好预算。 ,数据挖掘适用于多行业,能你从数据中找出有用的信息。如果你刚接触数据挖掘,建议先了解一下基础的概念
数据挖掘
0
2025-06-11
资产设计原则及数据仓库模型简介
资产设计原则涵盖了从业务系统中获取的各类客户资产和建行自有资产,包括房地产、存货、机动车辆以及在其他金融机构的存款。客户在本行的存款虽然也是资产,但不在此处列出。客户资产来源于贷款申请时的各种担保信息和抵质押品信息,建行自有资产主要由抵债资产组成。当前在源业务系统中记录的资产包括:CMIS、OPICS、DMAMIS、CLPM、SARM、PMIS、OBDI。数据仓库模型的简介将进一步说明资产管理和整合的方法。
Oracle
13
2024-08-14