eBay 数据的爬虫项目,功能挺全,适合练手数据挖掘。命令行模式,直接传搜索词和页数,输出产品名、价格、卖家信息这些关键字段,还能把数据写进数据库。比较适合搞数据、爬虫开发的同学,尤其是用 Python 干这行的。爬下来的价格单位是以色列谢克尔,有点小众但也挺有意思,适合当个练习项目。
Data Mining Project ITC数据科学课程中的eBay爬虫项目
相关推荐
Data Mining Principles
数据挖掘原理是指从大量的数据中提取有价值的信息和知识的过程。这个过程通常包括数据的清洗、集成、选择、变换、挖掘和评估等多个步骤。通过运用统计学、机器学习和数据库系统等技术,数据挖掘能够识别数据中的模式和关系,为决策提供支持。
数据挖掘
9
2024-10-31
Data Warehouse and Data Mining Overview
数据仓库与数据挖掘是信息技术领域中的重要组成部分,尤其在当今大数据时代,这两个概念的重要性日益凸显。华北电力大学开设的这门研究生课程,由郑玲老师主讲,深入讲解这两方面的理论与实践。数据仓库(Data Warehouse)是企业级的信息系统,用于存储历史数据并支持决策分析。它通过集成来自不同业务系统的数据,提供一致、稳定且易于分析的数据视图。数据仓库的设计通常包括数据源、数据清洗、数据转换、数据加载和数据展现五个阶段。其中,数据源是各种业务系统中的原始数据;数据清洗是去除数据中的错误、不一致和冗余;数据转换则将数据转换为适合分析的格式;数据加载将处理后的数据加载到数据仓库中;数据展现使用户能通过
数据挖掘
14
2024-11-03
Internet-Web-Technologies-BioMedical-Data-Mining IWT数据挖掘项目
这个名为\"IWT数据挖掘项目\"的项目由NIT RAIPUR的拉胡尔·何塞(Rahul Jose)主持,专注于将互联网网络技术应用于生物医学数据挖掘。项目利用先进的网络技术和数据分析工具从大量生物医学数据中提取有价值信息,推动医疗健康领域的科研和实践。互联网网络技术涵盖一系列用于创建、维护和使用互联网的协议、标准和技术,如HTTP、FTP、TCP/IP以及HTML、CSS和JavaScript等网页开发语言。在生物医学数据挖掘中,项目涉及数据收集、数据预处理、数据分析、可视化、数据安全与隐私、Web应用程序开发、云计算与大数据处理、实时与流式数据处理以及AI与深度学习等关键技术领域。
数据挖掘
13
2024-07-23
Data-mining IA8B数据挖掘实验项目
数据挖掘的实战项目里,Data-mining-IA8B的内容还挺丰富的,比较适合边学边练那种。实验室用的是Jupyter Notebook,代码和解释都放一块,操作起来也方便,实时运行,响应也快。
压缩包里带了好几个数据集,从用户行为到社交数据都有,都是些挺贴近真实场景的素材。做数据清洗、建模、时正好能用上,模拟项目还原度还蛮高的。
每个 Notebook 基本就是一个小任务,像是怎么缺失值、怎么做特征工程,用随机森林还是SVM,甚至怎么调参都写得挺清楚。你一边看一边改,效果立马就能看到。
可视化这块用的比较多的是Matplotlib和Seaborn,图表整得还不错,什么热力图、散点图都有,方
数据挖掘
0
2025-06-22
Philosophical Insights in Data Mining
This English paper delves into the philosophical underpinnings of data mining, exploring its implications beyond technical methodologies. It employs specialized language to navigate complex concepts and theories, inviting readers to engage with the deeper significance of extracting knowledge from da
数据挖掘
19
2024-05-16
Sentiment Analysis in Data Mining
情感分析在数据挖掘中的应用
概述
随着互联网的快速发展和社交媒体平台的普及,人们越来越依赖于在线评论、博客和新闻来获取产品和服务的信息。因此,情感分析作为一项重要的数据挖掘技术,能够帮助企业和个人理解用户对特定产品、服务或事件的情感倾向,对于市场营销、品牌管理及客户服务等方面具有重要意义。
情感计算的基本概念
情感计算(Affective Computing)是一种利用计算机技术自动分析文本、图像或视音频等媒介中所蕴含的情感倾向及其强度的技术。其主要目标是识别和处理人类情绪信息。情感计算可以分为两个主要方面:- 主观性(Subjectivity):指的是文本或信息的主观程度,通常分为三种类
数据挖掘
7
2024-10-31
Data Mining Course Materials Overview
数据挖掘课程资料主要涵盖了解析大型、复杂且信息丰富的数据集的重要性,及数据挖掘过程的目标、主要任务和技术来源。本课程介绍了数据挖掘的互动性过程及其基本步骤,强调数据质量对挖掘结果的影响,以及数据仓库与数据挖掘的关系。
第一章:介绍数据挖掘的基本概念,包括以下关键新词:- Verify(验证)— 确保数据的准确性。- Formalize(形式化)— 将数据转换为适合分析的形式。- Dedicate(专注的)— 专家需专注,充分挖掘数据价值。
数据挖掘过程中的重要概念:1. Scenario(想定):指某种特定情况或预设结果。2. Notion(概念):对数据的理解与假设。3. Spectrum(
数据挖掘
17
2024-10-25
Data-Mining-Steps-Overview
数据挖掘步骤
数据收集和与处理:首先需要收集并整理相关数据。数据可以来自不同来源,如数据库、文件或实时数据流。数据清洗是重要的一步,确保数据没有缺失或错误。
问题定义:明确数据挖掘的目标,制定清晰的问题定义,确保挖掘的过程和目标一致。
数据挖掘算法执行:根据目标选择合适的算法,执行数据挖掘,提取数据中的规律和模式。
结果解释和评估:对挖掘结果进行解读,评估其准确性和实用性,根据评估结果进行调整和优化。
数据挖掘
22
2024-11-05
Web Data Mining Analyzing Hyperlinks,Content,and User Data
本书探讨Web资源分析的方法和技术,深入挖掘超链接、内容以及用户数据,揭示如何有效利用这些数据进行决策和优化。
算法与数据结构
19
2024-10-31