行为科学

当前话题为您枚举了最新的行为科学。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

行为科学统计基础
本书详细介绍了行为科学(特别是心理学)中使用的基础统计知识,包括描述统计、简单假设检验以及基本的多元统计方法。对于希望进行数据分析的学生来说,这是一本不可多得的参考书。
SQL用户行为分析
提供了一份订单信息表SQL脚本,可供MySQL 8.0及以上数据库使用。表中包含用户ID、订单ID、支付状态、支付金额和支付日期。
Matlab编程技巧Psychopy_ext框架用于行为神经科学和心理学实验的设计、分析和绘图
如果您想深入了解如何使用该软件包,请参阅详细说明。Psychopy_ext是一种灵活的框架,专为快速设计、分析和绘制神经科学和心理学实验而设计,与PsychoPy、PyMVPA或matplotlib不同,它通过选择合理的默认值并提供常见任务模板,简化了实验的构建和分析。此外,它支持自动运行实验、提供GUI和命令行解释器,满足定制需求,使得实验设计更加简便。
数据科学免费自学数据科学的路径与资源推荐
想自学数据科学,但不想花一大笔钱?这个免费的开源课程推荐路径可以帮你走上正轨!通过 MOOC(大规模开放在线课程),你可以随时随地接触到世界顶级大学的课程。推荐的课程涵盖从数据科学基础到机器学习的各个方面。课程安排也灵活,你可以根据自己的进度来调整。最棒的是,只要你能每周投入 20 个小时,大约两年内就能完成所有学习内容! 其中,包括了计算机科学、数据结构与算法、微积分等课程。每个模块都被精心设计,适合任何想深入理解数据科学的朋友。你还可以根据个人情况调整学习进度,看看自己预计何时能完成。嗯,,如果你有足够的热情,走这条路不难! 顺便提一下,课程内还附带了一些实用的资源链接,像 MIT 的线性
原子提交行为测试
SQLite 坚固耐用,即使遭遇断电或系统崩溃也能妥善应对。自动化测试对此进行了 91/123 次验证。
Matlab实现Agent蜂拥行为
本项目用Matlab实现了agent的蜂拥行为。通过模拟多个agent的互动,展示了其在不同环境下的行为模式。
超星教育数据学习行为分析
本数据集包含来自超星集团在线教学平台的数据,可用于数据挖掘和学习行为分析。
Impala实时用户行为分析引擎
Impala 是个给力的工具,专门为大数据设计的。它能在大规模数据集上进行低延迟的 SQL 查询,适合用来做实时用户行为。如果你有用户行为数据,比如网页点击流、APP 交互之类的,Impala 可以帮你快速查询和这些数据,你做出更快速、精准的业务决策。举个例子,想要实时追踪用户的浏览路径、停留时间,Impala 起来流畅。适合用在需要快速响应的场景,比如优化产品体验或者做个性化营销。嗯,Impala 的查询性能相当高,背后是通过内存计算避免了磁盘 I/O 的延迟,速度相当快。而且它支持 SQL 语法,操作起来和传统数据库差不多,基本不需要额外学习啥新语言,挺方便的。
JData商铺数据用户行为预测
用户购买意向预测用的商铺数据集,数据结构清晰,用起来挺顺手的。网上有人放出来过,但要积分,太麻烦了,我这边直接放出来,想用就拿走,别客气。 jdata 的商铺表数据,配合用户行为数据能做不少有意思的事情。比如预测用户在某类店铺的购买概率,或者训练一个推荐模型用XGBoost试试看,效果还不错。 文件名是jdata_shop.csv,格式比较规整,字段不多,字段之间的关联性挺清晰。基本上你拿来喂模型就行,省去了不少清洗麻烦。 资源链接在这:百度网盘,提取码:23ty。我就是看不惯那些乱要积分的,咱就公开点。 如果你在做用户行为、CTR 预估、推荐系统这些项目,可以直接上手。不用太复杂的模型,跑个
Spark助力数据科学
Spark:数据科学的强大引擎 Spark 凭借其分布式计算能力和丰富的工具生态,已成为数据科学领域不可或缺的利器。它能够高效处理海量数据,并支持多种数据科学任务,例如: 数据预处理: 使用 Spark 清洗、转换和准备数据,为后续分析打下坚实基础。 机器学习: Spark MLlib 库提供多种机器学习算法,涵盖分类、回归、聚类等领域,帮助您构建预测模型。 数据可视化: 结合其他可视化工具,将 Spark 分析结果转化为直观的图表和图形,洞察数据背后的规律。 Spark 的优势: 速度快: 基于内存计算,比传统 MapReduce 框架快数倍甚至数十倍。 易于使用: 提供 Py