线性规划
当前话题为您枚举了最新的 线性规划。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
Python实现线性规划模型
以下是使用Python实现线性规划模型的代码示例。线性规划是一种优化问题的数学方法,通过定义目标函数和约束条件来求解最优解。Python提供了多种库和工具来进行线性规划模型的实现和求解。
算法与数据结构
11
2024-09-18
线性规划的MATLAB优化方法
无约束规划
非线性规划
Matlab
12
2024-05-25
MATLAB线性规划建模与求解
线性规划的 MATLAB 解法是那种一用就上手的工具。linprog这个函数挺好用的,适合做优化模型的你。只要把问题整理成标准形式——目标函数最小化、等式约束、变量非负——基本就能跑起来。
MATLAB 的线性规划支持度不错,linprog用起来效率还蛮高的。像资源分配、生产优化这类场景,配上这个函数省事。界面交互一般,但好在代码结构清晰。
比如你要最小化一个成本函数,有几个限制条件,只要把系数矩阵搞清楚,一行代码就能。嗯,连图形化都能配合搞一下,挺方便的。
不过要注意,linprog默认是标准形式的,如果你是最大化或者不等式约束,要先转一下格式。格式不对的话,它可不给你好脸色看。
如果你对其
Matlab
0
2025-06-14
使用Matlab解决线性规划问题
四、在模型1中,由于a是任意给定的风险度,不同的投资者有不同的风险偏好。我们从a=0开始,以步长△a=0.001进行循环搜索,编写的程序如下:
Matlab
10
2024-09-01
第01章线性规划的简介
线性规划是一种优化问题的数学方法,广泛应用于工程、经济学和管理科学领域。它通过确定最佳决策变量值来实现特定的目标函数,以最大化或最小化目标。这种方法通常涉及一组线性约束条件,用于限制决策变量的取值范围。线性规划方法被广泛用于制造业的生产计划、供应链管理和资源优化。如需详细了解线性规划,请参阅附件中的PDF文档。
Matlab
19
2024-07-22
基于线性规划的促销策略优化
利用 RFM 指标和响应-价值系数,通过线性规划模型,可以优化促销策略,以最大化预期收益。
模型考虑了每个促销活动的成本、参与人数上限和下限,以及客户参与促销活动总次数的限制。
通过求解该模型,可以确定最佳的促销活动组合以及每个活动的目标客户。
例如,根据表 3 和表 4 的数据,企业应选择开展第 1、2、3 和 5 项促销活动,并根据 xij 的值确定每个活动的目標客户。
数据挖掘
12
2024-05-21
双市场线性规划模型构建与求解
考虑到不同市场价格差异,构建线性规划模型以最大化虚拟经销商利润。假设甲方以不同价格售出的产品数量分别为 A1,A2,A3,A4,乙方以不同价格购买的数量分别为 X1,X2,X3,X4;丙方以不同价格售出的产品数量分别为 B1,B2,B3,B4,丁方以不同价格购买的数量分别为 Y1,Y2,Y3,Y4。假设 AX 和 AY 分别代表甲方对乙方和丁方的供货量,BX 和 BY 分别代表丙方对乙方和丁方的供货量。
目标函数为最大化虚拟经销商总利润。约束条件包括供需平衡、供应限制、需求限制以及非负限制。其中,供需平衡约束需体现决策变量之间的关系:
A1 + A2 + A3 + A4 = AX + AY
算法与数据结构
19
2024-05-27
基于MATLAB的线性规划:算法与应用
基于MATLAB的线性规划:算法与应用
本书深入探讨了多种线性规划算法和方法,并辅以计算演示,其中着重介绍了改进的单纯形法及其组成部分。对于每种算法,本书都提供了理论背景、数学公式、完整的数值示例以及相应的MATLAB代码实现。这些实现经过精心设计,即使面对大规模的基准线性规划问题,用户也能找到解决方案。
书中对每种算法都进行了基于基准问题的计算研究,分析了算法的计算行为。作为对现有特定算法文献的补充,这本书对于具备线性代数和微积分基础的研究人员、科学家、数学程序员和学生都非常有价值。
读者能够通过清晰的讲解理解和应用单纯形法的所有组成部分,包括预求解技术、缩放技术、数据透视规则、基更新方法以
Matlab
18
2024-05-26
MatLab非线性规划问题实验方法
MatLab 的非线性规划(NLP)问题方案,挺适合做优化类问题的实验,尤其是涉及到科学计算和工程设计时。MatLab 优化工具箱强大,它包含了多非线性问题的函数,比如fmincon和fminunc,都可以你搞定有约束或无约束的优化问题。fmincon适合带约束的情况,比如线性、不等式等,而fminunc则用于没有约束的情况,代码也比较简洁。重点是,在建模时你得搞清楚目标函数和约束条件,这样才能正确地进行优化。比如,如果你要最大化某个量,可以在fmincon里设定目标函数和相关约束,MatLab 会帮你掉复杂的计算。,算法的选择也重要。MatLab 支持不同的优化算法,比如梯度下降法、拟牛顿法
Matlab
0
2025-06-15
无约束非线性规划搜索过程
无约束非线性规划问题最优解为(1 1),初始点为(-1 1)迭代结果如下:| 迭代次数 | X | Y | F || ----- | ----- | ----- | ----- || 0 | -1 1 | 4.00 || 1 | -0.79 0.58 | 3.39 || 2 | -0.53 0.23 | 2.60 || 3 | -0.18 0.00 | 1.50 || 4 | 0.09 -0.03 | 0.98 || 5 | 0.37 0.11 | 0.47 || 6 | 0.59 0.33 | 0.20 || 7 | 0.80 0.63 | 0.05 || 8 | 0.90 0.003 |
Matlab
17
2024-06-01