非参数统计

当前话题为您枚举了最新的 非参数统计。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

小麦区域试验中的非参数统计应用分析
利用非参数统计方法分析了1998~1999年湖北省小麦良种区域试验中各品种(系)的丰产性、稳定性、适应性和试点的鉴别力。研究结果显示,非参数统计分析简单明了,效果显著,特别是试点鉴别力指数(Di)对试点的选择和分布具有重要指导意义。在参试品种中,鄂麦12、S048、D 402在丰产性、稳定性、适应性方面表现突出。建议在试点选取与分布策略中增加湖北省北部地区的试点数量。
Matlab教程非参数拟合技术详解
非参数拟合是一种通过数据点生成平滑曲线而不涉及具体参数的方法。它包括插值法和平滑样条内插法,适用于那些不需要详细参数解释的情况。在Matlab中,非参数拟合技术能够有效处理数据曲线的平滑化需求。
Cox-Stuart 非参数趋势检验
此代码执行双尾 Cox-Stuart 检验的一种版本,用于检验向量 V 中是否存在趋势。该检验的零假设是 V 中不存在趋势。检验结果在 H 中返回,其中 H = 1 表示在 alpha 显著性水平上拒绝原假设,H = 0 表示未能在 alpha 显著性水平上拒绝原假设。
Python非参数微分方程建模代码库
Python非参数微分方程(npde)建模代码库包含了具有高斯过程的非参数微分方程的实现。此存储库覆盖了与ODE模型相关的两篇论文发布的内容。演示笔记本提供详细的使用示例和图片。代码实现基于Python3.5,并通过TensorFlow会话进行模型构建、拟合和预测。模型适用于简单数据,支持预测未来路径和样本生成。
AnomalyDetector MATLAB非参数时空异常检测代码概述
AnomalyDetector 是一个用于 MATLAB 环境的非参数异常检测器,可用于进行 时空异常检测。源代码在 Linux 系统下使用 MATLAB R2009b 进行了测试。此工具不依赖于非标准库,除了用于可视化的 tight_subplot.m 函数外,代码所需的所有文件均在工作目录中。数据集位于“数据”文件夹中,其中包含清理和对齐的传感器数据。 要测试 非参数方法,可在工作目录中键入 nonparametric_approach。 要测试 概率方法,则可通过在工作目录中键入 probabilistic_approach。 无论哪种方法,均可在数秒内获得测试结果。
基于MATLAB的非参数动态功能连接(NDFC)软件
该软件利用Gibbs Sampler实现了无限合并马尔可夫模型(IHMM)和无限Wishart混合模型(IWMM), 用于分析动态功能连接。 其中,IHMM基于Juergen Van Gaels IHMM工具箱构建,并通过demoIHMM.m进行演示。IWMM则通过demo_wishartMM.m进行演示,用于计算新数据集的预测可能性。 该软件已应用于已提交出版物“用于动态功能连接的模型的预测评估”的部分研究。
基于统计参数的运动区域检测
运动检测领域常用背景减法。此方法通过分析历史样本,构建统计参数模型,并结合样本数量、采样时间中心和最后时间点等参数进行优化。这些参数在现有背景模型中常被忽略,但可以提高模型更新的及时性和准确性。实验证明,该模型能有效抑制尾部现象、阴影、光照变化、重复运动和杂乱区域等造成的误检。
参数估计-matlab数据统计分析(参数估计)
正态总体参数估计 命令:normfit(X, alpha) 显著性水平alpha缺省为0.05 返回值: muhat:均值点估计值 sigmahat:标准差点估计值 muci:均值的区间估计 sigmaci:标准差的区间估计
估计隐藏过程的密度、回归或方差函数的非参数估计
EstimHidden是一个专门用于非参数估计的包,适用于以下情况:1. 在观察到Z=X+noise1的卷积模型中估计X的密度;2. 在“变量误差”模型中估计函数b(漂移)和s^2(波动率),其中Z和Y遵循观察模型Z=X+noise1和Y=b(X)+s(X)noise2;3. 在随机波动率模型中估计函数b(漂移)和s^2(波动率),其中Z遵循观察模型Z=X+noise1,并且X_{i+1} = b(X_i) + s(X_i)noise2。对于噪声1的密度,我们考虑高斯('正常')、拉普拉斯('symexp')和log(Chi2)('logchi2')三种情况。
MATLAB代码实现关联分析minepy-基于最大信息的非参数探索
minepy为基于最大信息的非参数探索(MIC和MINE系列)提供了一个库,主要特征包括APPROX-MIC和MIC_e估算器,以及总信息系数(TIC)和广义均值信息系数(GMIC)。该库提供ANSI C库和C++接口,同时具备高效的Python API和MATLAB/OCTAVE API。minepy采用GPLv3许可,提供minerva R接口。建议使用MICtools进行TICe和MICe分析,以评估关联关系的重要性。