非参数统计
当前话题为您枚举了最新的 非参数统计。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
小麦区域试验中的非参数统计应用分析
利用非参数统计方法分析了1998~1999年湖北省小麦良种区域试验中各品种(系)的丰产性、稳定性、适应性和试点的鉴别力。研究结果显示,非参数统计分析简单明了,效果显著,特别是试点鉴别力指数(Di)对试点的选择和分布具有重要指导意义。在参试品种中,鄂麦12、S048、D 402在丰产性、稳定性、适应性方面表现突出。建议在试点选取与分布策略中增加湖北省北部地区的试点数量。
统计分析
8
2024-08-03
Matlab教程非参数拟合技术详解
非参数拟合是一种通过数据点生成平滑曲线而不涉及具体参数的方法。它包括插值法和平滑样条内插法,适用于那些不需要详细参数解释的情况。在Matlab中,非参数拟合技术能够有效处理数据曲线的平滑化需求。
Matlab
13
2024-10-01
可转债价值非参数估计2007
非参数估计的可转债,嗯,这个资源挺有料的。文章是 2007 年的,虽然不新,但讲得还挺实在。用了核密度估计这招,专门可转债的价值——比如像华菱转债这种带转股条款的,估值起来真不容易。作者不是靠传统金融模型那一套,而是走了统计这条路,看得出来还挺注重实证。你要是做前端的,刚好对金融数据可视化感兴趣,这篇值得一看,数据+方法一应俱全。
统计分析
0
2025-06-15
Cox-Stuart 非参数趋势检验
此代码执行双尾 Cox-Stuart 检验的一种版本,用于检验向量 V 中是否存在趋势。该检验的零假设是 V 中不存在趋势。检验结果在 H 中返回,其中 H = 1 表示在 alpha 显著性水平上拒绝原假设,H = 0 表示未能在 alpha 显著性水平上拒绝原假设。
Matlab
19
2024-05-12
Python非参数微分方程建模代码库
Python非参数微分方程(npde)建模代码库包含了具有高斯过程的非参数微分方程的实现。此存储库覆盖了与ODE模型相关的两篇论文发布的内容。演示笔记本提供详细的使用示例和图片。代码实现基于Python3.5,并通过TensorFlow会话进行模型构建、拟合和预测。模型适用于简单数据,支持预测未来路径和样本生成。
Matlab
10
2024-08-14
AnomalyDetector MATLAB非参数时空异常检测代码概述
AnomalyDetector 是一个用于 MATLAB 环境的非参数异常检测器,可用于进行 时空异常检测。源代码在 Linux 系统下使用 MATLAB R2009b 进行了测试。此工具不依赖于非标准库,除了用于可视化的 tight_subplot.m 函数外,代码所需的所有文件均在工作目录中。数据集位于“数据”文件夹中,其中包含清理和对齐的传感器数据。
要测试 非参数方法,可在工作目录中键入 nonparametric_approach。
要测试 概率方法,则可通过在工作目录中键入 probabilistic_approach。
无论哪种方法,均可在数秒内获得测试结果。
Matlab
10
2024-11-05
基于MATLAB的非参数动态功能连接(NDFC)软件
该软件利用Gibbs Sampler实现了无限合并马尔可夫模型(IHMM)和无限Wishart混合模型(IWMM), 用于分析动态功能连接。
其中,IHMM基于Juergen Van Gaels IHMM工具箱构建,并通过demoIHMM.m进行演示。IWMM则通过demo_wishartMM.m进行演示,用于计算新数据集的预测可能性。
该软件已应用于已提交出版物“用于动态功能连接的模型的预测评估”的部分研究。
Matlab
16
2024-05-27
基于统计参数的运动区域检测
运动检测领域常用背景减法。此方法通过分析历史样本,构建统计参数模型,并结合样本数量、采样时间中心和最后时间点等参数进行优化。这些参数在现有背景模型中常被忽略,但可以提高模型更新的及时性和准确性。实验证明,该模型能有效抑制尾部现象、阴影、光照变化、重复运动和杂乱区域等造成的误检。
统计分析
11
2024-05-21
参数估计-matlab数据统计分析(参数估计)
正态总体参数估计
命令:normfit(X, alpha)
显著性水平alpha缺省为0.05
返回值:
muhat:均值点估计值
sigmahat:标准差点估计值
muci:均值的区间估计
sigmaci:标准差的区间估计
Matlab
10
2024-05-25
非参数回归模型在金融时间序列中的应用
非参数回归模型在金融领域的应用真的蛮有意思的,尤其是在时间序列数据时。嗯,你知道传统的回归模型一般都得预设数据的分布形式,可是金融市场的数据常常比较复杂,完全不符合这些假设。非参数回归模型可就不一样了,它不要求你预设分布,反而能更灵活地捕捉数据之间的关系,效果挺不错的。比如,核回归和 LOWESS 这两种方法,都可以在金融时间序列中发挥重要作用。
如果你在股市收益率,尤其是像上证综指这样复杂的数据,非参数回归方法能给你带来更准确的预测结果。两者对比,核回归的效果往往更好,但在边界处会有些小波动,LOWESS 相对更稳健。所以,选择哪种方法,得看具体情况。不过,值得注意的是,金融市场数据的随机性
统计分析
0
2025-06-17