分类回归树
当前话题为您枚举了最新的 分类回归树。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
CART分类回归树C++实现
C++写的CART 分类和回归树实现,结构清晰、代码不啰嗦,挺适合拿来学习算法或者搞个项目原型的。
源码目录规整,数据格式要求也不复杂。训练数据和测试数据都用一种类似label feature:value的方式,特征值如果是 0 就干脆不写,省空间也快不少。嗯,挺合理。
标签从 1 开始编号,比如 4 类问题,就用 1、2、3、4。特征 ID 也得升序排,像1:0.3 3:0.5 7:0.1这样,不然读取会出问题。适合你自己生成数据喂模型,也方便测试。
回归和分类都能搞定,写法偏底层,适合熟悉算法逻辑。你想看 C++里怎么实现二叉树分裂、Gini 系数这些,那这套代码还挺不错的。
还有几个相
数据挖掘
0
2025-06-16
分类与回归之别
分类和回归皆可预测,但分类输出类别标签(离散属性),回归输出连续属性值。举例:预测客户流失(分类),预测商场营业额(回归)。
算法与数据结构
20
2024-05-13
分类算法:决策树详解
分类算法:将数据分类到预定义类别中。
分类算法面临的问题:过拟合、欠拟合、特征选择。
决策树算法:采用树状结构,通过一系列规则将数据划分到不同的类中。
评估模型准确性:使用准确率、召回率、F1值等指标。
应用:医疗诊断、市场细分、欺诈检测等。
算法与数据结构
16
2024-05-13
MATLAB 决策树分类器
本示例代码展示了如何使用 MATLAB 决策树算法对特定疾病进行诊断,提供可下载的代码供参考。
算法与数据结构
15
2024-05-13
WEKA数据挖掘:分类与回归详解
WEKA数据挖掘:分类与回归详解
在WEKA平台中,分类和回归功能都被整合在“Classify”选项卡下。
核心概念:
Class属性: 作为预测目标的属性,其类型决定了任务是分类还是回归。
若Class属性为分类型,则任务为分类。
若Class属性为数值型,则任务为回归。
训练集: 包含已知输入输出数据的数据集,用于模型训练。
操作流程:
数据预处理: 对原始数据进行清洗、转换等操作,以适应算法需求。
模型建立: 选择合适的分类或回归算法,并使用训练集进行模型训练。
模型评估: 通常采用10折交叉验证等方法评估模型性能。
模型应用: 使用训练好的模型对新的、未知输出的数据集进行
数据挖掘
16
2024-05-27
Logistic回归与分类变量分析
在Logistic回归中,多元线性回归模型为:
y = β0 + β1X1 + β2X2 + … + βpXp当y为分类变量(如发生/未发生,阳性/阴性等)时,以上模型不再适用。因此,我们用发生的概率P来代替y:
P = β0 + β1X1 + β2X2 + … + βpXp
数据挖掘
11
2024-10-31
RVM分类器及回归Matlab源代码
提供了RVM分类器及回归Matlab源代码的实例,可通过点击SB1_ExampleClassify.m查看RVM分类结果。
Matlab
11
2024-08-30
MATLAB C4.5决策树分类算法
C4.5 决策树算法的 MATLAB 实现,使用起来挺方便的。这个算法可以你分类问题,比如说根据数据特征判断不同类别,常用于数据挖掘领域。如果你有数据分类需求,C4.5 算是一个不错的选择,效果也蛮好的。通过生成决策树,算法能自动选择最佳的分类标准,从而提高决策效率。有兴趣的话,推荐几个相关的资源给你看看:MATLAB 环境下的决策树 C4.5 算法源码基于 MATLAB 的 C4.5 决策树算法实现及应用数据挖掘实践基于 C4.5 算法的决策树构建演示 PPT分类算法:决策树详解MATLAB 决策树分类器如果你是 MATLAB 用户,直接下载源码就能用,挺方便的。
Matlab
0
2025-06-17
支持向量机分类与回归的matlab程序
支持向量机在分类与回归任务中具有广泛的应用,介绍了相关的matlab代码实现。
Matlab
14
2024-08-05
ML实验3深入探索决策树分类
决策树分类概述
决策树是一种在机器学习和人工智能领域中被广泛应用的监督学习算法,尤其在分类问题上表现突出。通过构建一棵树状模型,它可以执行一系列的决策,最终预测目标变量。在“机器学习实验3-决策树分类实验下”中,学生将深入理解和实践决策树的核心概念,包括基尼系数、参数调优和与其他分类算法的对比。
一、决策树分类原理
决策树的构建主要基于信息熵或基尼不纯度等准则。基尼系数用于衡量分类纯度,数值越小表示分类越纯净。在生成过程中,每次选择划分属性时,会选取使子节点基尼系数减小最多的属性,从而尽可能聚集类别纯度高的样本。这一算法称为 ID3(Information Gain) 或 CART(Clas
算法与数据结构
8
2024-10-28