稀疏建模
当前话题为您枚举了最新的 稀疏建模。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
SLEP稀疏建模工具包
稀疏建模里的神器——SLEP 工具包,你如果常在搞信号、图像识别或者搞机器学习模型压缩,那它你得试试。它其实就是一堆高效的稀疏表示算法,封装得比较利索,直接在 MATLAB 里就能跑,省事还省心。
L1 最小化、LASSO、岭回归这些常见操作它都搞定了,还有IHT那类迭代算法也能跑。甚至连高斯过程回归这种非参数方法也打包在内了,功能算是比较全的。
要用也不难,几行代码就能起飞:
%加载数据
data = load('your_data.mat');
%定义模型
model = 'l1';
%设置参数
param.lambda = 0.1;
%运行 SLEP 求解
solution = slep
算法与数据结构
0
2025-06-16
统计学习Lasso与稀疏建模
Lasso 回归的算法实现和理论讲得清楚透彻,实操性也挺强,是那种你一看就想动手试试的资源。书里不光把Lasso的基本原理和优化算法说清楚了,还带你扩展到更复杂的模型,比如弹性网络、组 Lasso这些在实际项目里也挺常见的变体。讲到交叉验证选参数,还有软阈值这些技巧的时候,你会发现这些都是你日常调参里常遇到的问题,讲得还蛮实用的。
算法与数据结构
0
2025-06-24
MATLAB稀疏统计建模工具箱SpaSM
SpaSM是一个适用于MATLAB较高版本的稀疏统计建模工具箱,支持稀疏统计建模的各个方面。您可以通过访问http://www2.imm.dtu.dk/projects/spasm/获取更多信息。
算法与数据结构
11
2024-08-08
低秩与稀疏建模在大数据信号分析中的应用
低秩结构的信号,真的是个挺实用的方向,尤其在像认知雷达这类大数据时。你会发现多信号其实信息量并不大,换句话说就是“数据看着多,其实有效的没几个”,这时候就得靠低秩和稀疏建模了,压缩、去噪、提特征都靠它们,效率杠杠的。
像线性时不变系统的冲击响应,这种系统其实蛮常见的,搞自动控制或者通信的都绕不开。你如果用MATLAB建模和验证,还挺方便的,闭式解直接上,结果也稳。这方面可以看看这篇建模验证的文章,写得蛮清楚的。
讲到稀疏和低秩建模,就不得不提香农编码优化和SURF算法的结合,这种操作适合做图像或特征提取那一类的任务。代码也不少,比如这篇讲的是稀疏回归怎么优化效率,还有这篇用 SURF 提升稀疏
算法与数据结构
0
2025-07-02
稀疏表达的编程
稀疏表达的程序代码,使用Matlab验证实现,可供下载使用!
Matlab
9
2024-07-19
稀疏有效单叶稀疏三叉戟藻内酯开发
Sparseclean清除范围内小或NaN值或值的双稀疏矩阵。
Matlab
15
2024-05-13
稀疏表达的编程实现
利用Matlab验证实现稀疏表达的编程代码,可供下载使用!
Matlab
18
2024-07-26
MATLAB稀疏表示算法库
毕业设计的 MATLAB 算法库,内容还挺实在的。都是稀疏表示方向的经典算法,源码整理得蛮清楚,变量命名不乱,注释也到位,直接跑没啥坑。适合那种时间紧任务急的时候用,能帮你省不少调试时间。
MATLAB 的工具类源码,整理得还挺全,像OMP、K-SVD这些稀疏编码的经典算法都有,关键是配套函数都封好了,不用自己搭一堆框架,拿来即用,挺省事。
每个函数都能独立运行,调用关系不复杂。比如你要做一个图像压缩实验,直接改下路径,喂进去数据就行。测试也比较充分,能跑通。哪怕对 MATLAB 不太熟,也能快上手。
文件结构简单清晰,main.m就是入口脚本,运行逻辑都串好了。不需要翻半天逻辑才能找到主函数
Matlab
0
2025-06-15
Python稀疏矩阵计算谷歌网页PageRank
利用 Python 和稀疏矩阵技术,处理谷歌公开网页数据 (http://snap.stanford.edu/data/web-Google.txt.gz),高效计算网页 PageRank 值。
算法与数据结构
16
2024-05-27
MATLAB稀疏贝叶斯程序详解
稀疏贝叶斯学习(Sparse Bayesian Learning,SBL)是机器学习和统计建模中广泛应用的方法,尤其在高维数据处理和预测分析中占据重要地位。这个MATLAB程序专注于实现SBL理论,帮助用户有效处理数据,实现准确的参数预测。程序包括数据预处理、模型定义、后验概率推断和超参数设置等核心步骤,以及在电气领域和数据处理中的应用场景。
算法与数据结构
13
2024-07-16