Wilson-θ法

当前话题为您枚举了最新的 Wilson-θ法。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

Wilson Theta Time Integration Method MATLAB Implementation for Solving System Response to External Excitation
给定组装质量、刚度矩阵和阻尼矩阵,n个自由度的外部载荷矢量,系统对外部载荷的响应使用Wilson Theta逐步积分法计算。在时间步长上,可以根据问题更改Theta值,以调整数值精度和稳定性。 步骤:1. 输入质量、刚度和阻尼矩阵。2. 设定外部载荷矢量。3. 选择合适的Theta值(通常为0.5、1.0等)。4. 逐步计算系统响应。5. 输出计算结果并进行分析。
Howard Wilson的数值积分工具箱(NIT)概述
美国学者Howard Wilson和Bryce Gardner合作开发的数值积分工具箱(NIT)功能异常强大,可直接处理诸如一般区域二重积分和N重超长方体区域积分等复杂计算。例如,要计算如下积分,在Matlab中并无现成函数支持,但NIT能够轻松应对:在积分计算中,使用了计算精度eps,其值可以调整以适应具体需求。运行结果显示,积分结果为0.4119。
牛顿法改进
牛顿法是一种求根算法,它通过迭代过程逼近函数的根。该改进算法利用二阶导数信息提高收敛速度。
解读分箱法
分箱法是一种数据平滑技术,它通过将相邻数据点分组到“箱”中来实现。每个箱的深度代表其中包含的数据点数量,而箱的宽度则表示该箱所覆盖的值的范围。
鉴别法与集群法的异同数据分类分析
鉴别法与集群法有多相似之处,但又各有特点。鉴别法基于事先已知的类别,通过对已标记样本的属性,寻找最有效的分类函数。比如你手头有一些草本植物和木本植物的样本,鉴别法就能帮你通过它们的属性去推测分类。而集群法就不同了,它假设不知道分类,完全依靠样本的特征去自动分组,像是数据中没有任何标签的情况下,它能自己‘找’出类别。两者虽然都用于分类,但原理和应用场景完全不一样。如果你有分类任务,需要事先知道类别,选择鉴别法;如果没有预设类别,集群法是个更合适的选择。
级数法计算π值
利用级数公式1+1/2²+1/3²+...+1/n²的和等于π²/6,通过计算该级数的和并进行变形,即可近似计算π值。由于计算机运算有限,所得π值仅为近似值。
牛顿法 MATLAB 代码
牛顿法在 MATLAB 中的实现
zn法matlab代码
zn法matlab代码 本项目提供目标感知深度跟踪(TADT)方法的Matlab实现代码,以及图形绘制代码。 主要内容 TADT跟踪器代码 图形绘制代码 (即将推出) 引用 如果您发现该代码对您的研究有所帮助,请引用以下出版物: 李欣,马超,吴宝元,何振宇,杨明-。在IEEE计算机视觉和模式识别会议(CVPR)的会议记录中,2019年。 Bibtex: @inproceedings {TADT,作者= {李新和马,赵和吴,宝源和何,振宇和杨明H}, title = {可识别目标的深度跟踪}, booktitle = {IEEE计算机视觉与模式识别会议},年= {2019} } ## 联系
层次分析法AHP特点-AHP层次分析法详细教程
层次分析法(AHP)特点:分析思路清楚,可将系统分析人员的思维过程系统化、数学化和模型化;分析时需要的定量数据不多,但要求对问题所包含的因素及其关系具体而明确;
定位算法概述三边法与最大似然法等
利用已有的4个基站的测距数据,分别使用不同的算法(基于TOA的三边法和最大似然法,基于TDOA的Fang,Chan,Taylor,Friedland)计算移动台的位置坐标。读者可以修改为自己的测距数据,实现未知节点的定位。