数模比赛

当前话题为您枚举了最新的 数模比赛。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

MATLAB数模比赛资料包
数模比赛用 MATLAB 的资料包,挺全的,程序和实例都配好了,适合直接上手。不光有优化、仿真,还有不少图论、机器学习的小案例,适合比赛前冲刺复习或快速补漏。里面的.m 文件也写得比较规范,读起来不累。
课件比赛演示文稿
这是本人在学校举办的比赛中制作的演示文稿,供大家参考!
matlab数模分析入门教程
matlab数模分析中的基础入门教程,探讨了matlab在计算分析中的应用。
比赛评分系统设计
设计一个比赛评分系统,包含以下要求:1. 数据库中存储选手的基本信息,数据库名为pf_db,表名为S(bh,name,ssex,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p_avg)。2. 使用VB开发程序界面,界面版式可自定义。3. 利用ODBC将程序界面与数据库进行关联。4. 程序界面实现数据添加(包括基本数据和分数数据)、数据删除、数据修改及查询功能。
Matlab编程机器人比赛的实现
Matlab编程:机器人比赛的实现。实现了UCB E7机器人锦标赛的功能。
敏感性分析-马氏链数模经典
当平均需求每周波动在1附近时,敏感性分析揭示了最终结果的变化规律。假设需求以泊松分布形式呈现,其均值λ随着技术进步可能增长或减少10%,导致失去销售机会的概率相应增减约12%。
2022深圳杯数学建模比赛D题分析
2022年深圳杯数学建模比赛的D题要求参赛者分析和解决特定的数学建模问题。参赛者需要结合给定的数据和条件,提出合理的模型和解决方案。这一题目考察参赛者的数学建模能力及解决实际问题的能力。
全国高职组大数据比赛资源汇总
全国高职组大数据比赛资源汇总,是对2017年比赛的综合回顾和2018年的关键资源集。这一资料集包含广泛的大数据技术学习材料、竞赛题目解析、参赛团队策略分享以及历年优秀作品展示。用户需花费时间整理和挖掘其中的宝贵信息。大数据是现代信息技术的核心,涵盖数据采集、存储、处理和分析等关键环节。高职教育中的大数据课程通常涵盖大数据特征、数据采集技术、HDFS和NoSQL数据库的应用、MapReduce和Spark的数据处理、Hive、Pig、Spark SQL的数据分析、Tableau和PowerBI的数据可视化、机器学习算法及深度学习的应用、数据安全和隐私保护、以及云计算平台的大数据服务。
Astronomical Data Mining天池天文光谱分类比赛
天池的天文数据挖掘比赛,专注做天体光谱分类的事儿,挺适合想练练机器学习实战的你。数据是来自郭守敬望远镜,也就是 LAMOST,观测精度高、数据量大,不用自己采集就能开干,省了不少事。 光谱数据的其实还挺有挑战的,不是那种喂个模型就完事的活。你得动脑子噪声、缺失值,还有一堆波段特征,搞得像在解谜。好在题目背景讲得还挺清楚,配套资料也比较全。 适合用深度学习玩一玩,比如用1D CNN或者transformer搞个光谱分类模型。想快点出结果,也可以先撸个LightGBM试水,效果也不赖。 比赛用的数据体量不小,训练集数据一跑起来就是好几万条。建议你本地先搞个样本集调通流程,上服务器跑全量,效率会高不
基于AR参数模型的功率谱估计仿真程序
使用Matlab编写的仿真程序,用于数字信号处理中的AR参数模型功率谱估计。