个人隐私保护

当前话题为您枚举了最新的个人隐私保护。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

大数据时代个人隐私保护方案
大数据环境下的个人隐私保护,确实是做前端绕不开的一块内容。大数据时代的个人隐私保护.docx这份文档就挺实用,整理得比较清晰,适合前端、后端都过一遍。尤其是里面关于权限控制和数据脱敏的部分,蛮有参考价值的。 数据安全的思路分得比较细,从Hadoop安全机制到Kerberos认证,再到个人信息的分级管理,内容比较全,不会让你一头雾水。用来做项目需求也挺合适,响应快,查找方便。 你如果碰到需要用户信息、或者和大数据平台打交道的需求,比如接HBase、跑数据挖掘脚本,文档里有不少场景可以直接套用。不光是概念,连配置路径、工具包都有,算是比较接地气的资源了。 文档里也推荐了一些相关资料,比如大数据安全
大数据环境下个人隐私保护研究
随着大数据时代的到来,个人信息加工方式的转变加剧了隐私侵权问题。文章结合大数据环境下个人隐私安全存在的问题,梳理了问题成因,并提出了从技术、政策和法律等角度进行大数据时代个人隐私保护的可行性建议。
寄生虫解锁个人隐私研究
黑色简洁风格的标题挺吸睛的,间谍软件和数据挖掘这俩词直接把重点拎出来了。内容写得也比较扎实,讲了不少跟隐私保护有关的法律和技术问题,尤其是欧洲那边的情况,说实话,还挺有参考价值的。 嗯,WEKA 的那部分就挺适合前端搞数据可视化时了解下后端怎么搞数据的,毕竟数据源清洗好了,前端图表才更稳。文章里也顺手带了几个链接,像Cookie 法、隐私挖掘这些话题,读起来没那么学术,但内容还挺硬核。 如果你正好做前端项目时要涉及用户数据、隐私合规、甚至做点小的数据挖掘展示,那这篇文章还蛮值得看一下的。像是有些概念你看不懂,也别急,相关链接都可以顺着点下去补补课。 要注意的地方嘛,就是内容比较密集,适合你有空
ISO29515-2017个人隐私保护标准中断程序处理技术
根据ISO29515-2017个人隐私保护标准,介绍了中断程序的处理技术。图3展示了中断服务程序流程图,使用通用定时器2周期中断,并采用模块化设计。主要模块包括霍尔位置检测与换相控制、PWM控制、速度计算和AD采样模块。根据AD转换结果计算母线电流值,进行电流环调节。电流环周期为0.1ms,每次中断进行电流调节。根据霍尔位置信号判断是否换相,并设置换相触发标志位halltrig。速度达到期望值后设置速度闭环标志SpeedLoopFlag,根据SpeedLoopFlag决定固定或受控速度占空比,进行PWM和电流调节。最后,PWM控制根据halltrig更新PWM占空比。图4展示了BLDCM的本体
Hadoop 安全与隐私保护
Hadoop 安全机制保障了大数据平台数据隐私与安全,有效防御外部攻击和内部威胁。
序列模式挖掘隐私保护研究
针对序列模式挖掘中的隐私保护问题,研究人员提出了名为CLDSA(当前最少序列删除算法)的创新算法。 该算法通过对候选序列进行加权,并在删除过程中动态更新权重,以贪心算法获得局部最优解,从而最大限度地减少对原始数据库的修改。 实验结果验证了CLDSA算法在隐藏敏感序列方面优于现有方法,实现了更有效的隐私保护。
Geometric Data Perturbation隐私保护方法
几何结构的信息保留,是GDP 方法最大的亮点。在做数据挖掘时,多模型其实都是靠这些多维结构来提效的,比如聚类、分类、回归这些任务。GDP 不是那种一味加噪音的扰动方法,而是更聪明地保留了重要结构,这点蛮值得一试。 GDP 方法的私密性也挺有意思。作者还搞了个多列隐私评估框架,可以评估在不同攻击手法下的防护效果。尤其适合那种数据外包到云端的应用场景,既保护了隐私,又不牺牲模型效果。 实验部分也挺给力。对比了随机投影等其他方法,GDP 的模型表现还挺稳,隐私也没掉链子。如果你经常搞隐私计算或者数据共享相关的项目,这篇文章的思路和方法可以参考参考,真不是纸上谈兵。 顺带说下,作者陈可可之前在数据扰动
隐私保护数据挖掘前沿研究
随着移动互联网、物联网等技术的蓬勃发展,个人隐私数据面临着前所未有的侵犯风险。隐私保护数据挖掘成为数据挖掘领域的热点,研究者们针对移动端、分布式系统、高维数据和时空数据等场景下隐私保护问题,提出了多种方法和算法,取得了丰硕的成果。
永远在线时代:隐私衡量与保护
永远在线时代:隐私衡量与保护 数据挖掘在互联时代得到了极大的加强,从互联网到物联网 (IoT),用户通过电视、智能手机、可穿戴设备和计算机化的个人助理等各种方式连接到互联网。许多设备以“永远在线”模式运行,不断接收和传输数据,物联网设备的增加使用可能导致社会进入“永远在线”时代,个人数据不断被收集。 当前的隐私监管方法本质上是部门性的,仅在特定背景下保护隐私,并且仅针对特定的行业或群体,因此个人隐私面临巨大风险。然而,严格的隐私监管可能会对数据效用产生负面影响,尤其是在技术发展和创新方面。 数据效用和隐私保护之间的权衡需要新的解决方案,而差异隐私方法可能会有很大帮助。该方法建议在被视为敏感的数
大数据安全与隐私保护方案
大数据环境下的隐私保护一直是个老大难问题,越用得多、用得深,暴露的风险就越大。大数据安全与隐私保护这份资料挺系统,讲清了数据在收集、传输、存储几个环节的关键风险点,还有不少思路,像是数据脱敏、访问控制、加密机制都有提到。 用户行为数据的尤其敏感,你拿用户画像跑个推荐模型,一不注意就踩红线。文里也聊到不少隐私保护的技术挑战,比如差分隐私怎么权衡精度和保护效果,嗯,这个点挺值得你深挖一下的。 你要是项目里用到Hadoop或者HBase,可以顺带看看相关的安全配置,比如Kerberos 的接入方式。还有像Hadoop 的隐私保护,也整理得挺实用,适合一线开发参考。 另外,隐私保护数据挖掘的内容也蛮硬