分解过程

当前话题为您枚举了最新的 分解过程。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

体验模式分解动画展示EMD的过程-MATLAB开发
这个动画展示了如何通过输入信号的上下包络,并逐步减去它们的平均值,直到标准偏差小于预定义值,从而生成各个本征模态函数(IMF)。这是基于另一个EMD代码的开发,用于创建此演示代码。
关系数据库规范化理论的分解过程
对于非候选码的每个决定因子,删除表中所有依赖于它的属性;创建新表,包含原表中所有依赖于该决定因子的属性;将决定因子设为新表的主码。以S-L分解后的关系模式为例:S-D(Sno, Sdept)和S-L(Sdept, Sloc)。
Shapley 风险分解
给定协方差矩阵和权重向量,函数将返回每个资产的 Shapley 风险分解值。此外,还会计算 Euler 风险分解值以作对比。
EMD分解算法合集
本资源包提供EMD、EEMD、CEEMDAN等分解算法的MATLAB函数,可用于去噪和降噪处理。
CP分解在计量心理学中的应用—张量分解PPT
CP分解已被广泛应用于计量心理学中,涵盖语音分析、化学计量学、独立成分分析以及神经科学数据挖掘等领域。它特别适用于处理高维算子数据和近似随机偏微分方程。
EMD分解MATLAB代码实现
EMD 的信号分解能力是真的挺强,适合那种非线性又不稳定的信号。你要是做图像、金融时间序列,或者生物信号啥的,挺值得一试。EMD(经验模态分解)这个方法是 Huang 在 1998 年提出来的,它可以把复杂信号一步步拆成多个不同频率的部分,也就是所谓的 IMF(内在模态函数),加一个残差部分。代码整体结构清晰,每一步都注释得蛮详细,适合用来学习。核心流程就是通过三次样条插值找到上下包络线,计算平均值,差分之后就能拿到第一个 IMF。你每次提取一个 IMF 后,都会更新残差,重复上面的过程,直到达到你设置的 IMF 数量或者残差够小就可以停了。代码还顺带把希尔伯特变换也做了,能直接算出每个 IM
数据库分解算法
算法 5.2、5.3、5.4、5.5、5.6 介绍了用于将数据库分解为多个子数据库的算法,以满足特定范式(如 3NF、BCNF、4NF)并保持无损连接性和函数依赖关系。
PARAFAC 分解算法 MATLAB 实现
在稀疏张量中,parafac_als 用于实现 PARAFAC 分解。该子函数是张量分解的核心算法,搭配主函数使用。
LU分解算法实现示例
使用LU矩阵分解来解方程的算法示例。首先对矩阵进行LU分解,然后利用分解结果求解方程。这种方法在数值计算中广泛应用,特别是在解线性方程组时非常有效。
matlab开发-频率域分解
该matlab程序实现了专注于模态分析的频率域分解技术。