近似搜索

当前话题为您枚举了最新的 近似搜索。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

文本近似度匹配
使用python实现文本近似度匹配,从b列中查找与a列文本最相似的值及近似度。 例如:a列:白术b列:白术、炒白术、黄芩 输出:相似的值:白术、炒白术近似度:1
MySQL近似值函数解析
MySQL提供的round(x)函数负责计算离x最近的整数,round(x,y)函数负责计算离x最近的小数(小数点后保留y位);truncate(x,y)函数负责返回小数点后保留y位的x(舍弃多余小数位,不进行四舍五入)。
The Design of Approximation Algorithms近似算法教材
哥本哈根大学的近似算法课程笔记,整理成了一本还挺扎实的开源教材《The Design of Approximation Algorithms》。讲的都是实打实能用的算法技巧,比如贪婪算法、局部搜索、动态规划、线性规划这些经典玩意儿。 每一章都讲一个技术点,立马给你几个问题场景直接套上。讲完基础部分还不算完,后面还有进阶玩法,比如乘法权重、在线算法这些大数据场景下吃香的思路,都是手把手教你怎么上手。 书的语气虽然是研究生教材,但阅读起来还挺友好,尤其你要是有一点算法和数学功底,基本看得懂。里面还包含了哥大、MIT 等课程的讲义内容,不光讲原理,还配了不少实际应用,比如网络设计、资源调度这些在工程
数据流近似频繁项挖掘算法
数据流的频繁项挖掘,用起来最头疼的就是资源吃紧还不能多次遍历数据。你要是也被这个问题困扰过,可以看看这篇文章提出的算法,挺轻巧的一个思路,专门用来近似频繁项挖掘的问题,关键是速度快,内存占用还少。空间复杂度只有 O(ε⁻¹),意思就是内存用得省。每来一个数据项,平均时间也就 O(1),适合那种高频高速的数据流。像网络日志、传感器数据这些场景,挺适合直接上。整个算法核心就仨步骤:初始化、更新、查询。初始化时搞个紧凑的数据结构,比如滑动窗口;一边读数据一边更新;想查哪个项的频率就查,挺快的。误差也可控,你可以通过调整 ε,来平衡准确性和性能。对了,它实验过多数据集,表现还不错,在大规模数据下也跑得
利用神经网络近似sin函数
利用神经网络近似sin函数,不使用matlab工具箱,而是自行编写实现。
使用Google不同搜索区域的快速网络搜索方法
随着技术的发展,Google已经在不同的搜索领域(如图片、群组等)中提供了更便捷的搜索功能。用户可以根据需要在网页、图片、论坛、新闻、Froogle以及学术界等领域进行搜索。搜索区域可以通过指定参数来优化搜索体验,如语言设置和特定页面搜索。
资源搜索利器
直接使用百度查找资源?不如使用插件搜集海量优质资源,操作简单,只需将插件文件上传至admin文件夹覆盖即可。
Everything:文件搜索利器
Everything 是一款小巧但强大的文件搜索工具,以其极速的搜索速度著称,让查找文件变得无比轻松。
近似算法实验3:高级算法设计
学习目标: 掌握近似算法设计思想和方法 了解集合覆盖问题近似算法的设计思路 熟练使用编程语言实现近似算法 实验测试近似算法性能,分析优缺点 实验内容: 集合覆盖问题Python求解
使用SQL学习处理近似数字表格
近似数字tFloat treal可以通过SQL学习处理。