群稀疏优化
当前话题为您枚举了最新的 群稀疏优化。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
Structural Health Monitoring基于群稀疏优化的压缩感知方法
结构健康监测的压缩感知资源还挺实用的,是用group sparse optimization来搞无线传感器数据压缩,效率高还不失精度,做大规模部署挺有。你要是做结构监测、桥梁、隧道那类工程,这套方法真的可以省不少带宽和算力。
算法与数据结构
0
2025-06-13
蚁群算法优化电力分配问题
蚁群算法在解决功率分配问题中展示了详细的运算结果,为电力系统优化提供了有效方案。
Matlab
10
2024-09-25
物流分发优化的蚁群算法
这里提供物流分发优化的蚁群算法的Matlab源码,包含四个主要文件夹:可执行程序、算法实现代码、测试数据和算法文档。
Matlab
6
2024-09-29
MATLAB蚁群算法路径优化实现
基于 MATLAB 的蚁群算法,算是那种实用性和学习价值都挺高的资源了。蚂蚁找食物的路径灵感,被搬到了代码世界,变成了一种能 TSP、物流调度等优化问题的好方法。用 MATLAB 来实现,不光数值计算强,图形展示也清晰直观,调试起来也方便,适合拿来练手或者做项目原型。
蚁群算法的实现步骤其实也不复杂:初始化、路径选择、信息素更新、最优路径记录这些逻辑一层层铺开。最核心的,就是路径探索的策略设计和信息素的调控。代码里一般会用cell数组来存路径,用double类型的矩阵存信息素浓度,for 循环搭配概率计算,一套流程跑下来,还蛮有成就感的。
写的时候建议结构清晰点:比如把initAnts()、s
Matlab
0
2025-06-16
Ant Colony Optimization蚁群优化算法
想了解蚁群优化算法(ACO)吗?这本《Ant Colony Optimization》是了解这个领域的好资料。它详细了如何通过模拟蚂蚁觅食行为来难题,是在组合优化方面。你会看到,蚂蚁通过信息素交流的方式找出最短路径,而这种机制正是 ACO 的核心。书里不仅了算法原理,还有实际应用,包括网络路由、机器学习等领域。作者 Marco Dorigo 是 ACO 领域的领军人物,的内容既专业又通俗易懂,适合你深入学习。其实,如果你是计算机网络、资源分配或是其他优化问题的研究者,这本书真的是不错的选择。
算法与数据结构
0
2025-06-24
MRI图像稀疏优化重建的DFT Matlab源代码
DFT的Matlab源代码实现了MRI图像的稀疏优化重建。该实现采用非凸惩罚函数,鼓励稀疏性。所选惩罚函数为最小最大凹惩罚(MCP),用户可以通过直接运行main.m来比较流行方法与此实现之间的效果。Randon变换代码和DFT的反投影由Mark Bangert编写,解算器文件位于解算器文件夹中,用户可根据需求选择相应解算器。GIST_MCP.m使用Barzilai-Borwein步长的近端梯度法,而GIST_MCP_Nesterov.m则使用Nesterov加速的近端梯度法。详细的Nesterov加速近端梯度算法说明可参见Bo Wen等人的研究,该研究展示了在非凸非光滑最小化问题中的线性收敛
Matlab
8
2024-11-04
GP-SLAM稀疏高斯过程轨迹优化工具
matlab 的 egde 源代码的GP-SLAM,是做连续时间轨迹估计挺不错的一个选择。它用的是稀疏高斯过程回归,核心是用 C++写的,性能还挺稳。而且还有个可选的 Matlab 工具箱,调试比较方便,文档里自带示例,照着跑就能上手。
GPSLAM 的核心优势是支持连续时间建图,像那种不规则频率采样的数据起来更顺手。你只要装好boost、cmake这些依赖,基本就能跑起来。
构建流程也简单:先mkdir build,cmake ..,再make install,嗯,编译完还能跑一下单元测试,看看环境配没配对。
Matlab 端的话,你只要在编译时启用一下,就能在 Matlab 里直接用 C+
Matlab
0
2025-06-25
菌群优化算法:大自然启发的优化方案
菌群优化算法是一种创新优化算法,其灵感源自菌群的集体行为。它通过模拟菌群在环境中寻找食物和交流的过程,为优化问题提供有效的解决方案。
算法与数据结构
14
2024-05-13
MATLAB代码优化-BP-NMFBeta流程稀疏NMF
MATLAB代码优化:Beta流程稀疏非负矩阵分解(BP-NMF)是贝叶斯非参数扩展的一部分。介绍了BP-NMF的实现,强调了使用L-BFGS-B解算器来优化多个单变量函数的挑战。为了提高稳定性,可以考虑在非共轭变量上采用单变量求解器,尽管会降低速度。针对大型输入矩阵(如超过2分钟的22.05 kHz信号,具有1024点DFT和50%重叠),建议避免处理大量录音数据。代码包含推理、实用工具和实验部分,所有.ipynb扩展名的文件可以一起运行。此外,还提供了GaP-NMF的Python转换,以及使用随机结构化均值字段和折叠的Gibbs采样器进行推断的代码。
Matlab
16
2024-08-01
蚁群算法TSP路径优化MATLAB实现
蚁群算法的 TSP 解法,是个还蛮经典的优化套路。用 MATLAB 搞定它,也算是老前端摸摸 AI 门槛的好入口了。路径规划、算法优化、图形可视化,这套组合拳玩下来,收获挺多。
蚂蚁模拟找路的过程,听起来像在看自然纪录片,实际上就是一堆概率模型和迭代循环。信息素、启发式函数这些概念虽然听着挺玄,但你理解成“让代码自己学会选路”就对了。
MATLAB 这边,写起来没 Python 灵活,但胜在图形可视化真方便。你可以边跑代码边看蚂蚁怎么爬,也能实时调整参数,比如信息素蒸发率、蚂蚁数量这些,调一调路径就变了。
像物流配送这种实际问题,路径一多,暴力法就跪了,蚁群这种启发式就派上用场了。而且代码结构
算法与数据结构
0
2025-06-25