自适应步长
当前话题为您枚举了最新的 自适应步长。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
自适应步长萤火虫划分聚类算法研究
聚类分析在数据挖掘、模式识别和图像分析等领域具有重要作用。传统的 K-means 算法容易受初始聚类中心选择的影响,陷入局部最优解。为此,提出一种基于自适应步长的萤火虫划分聚类算法 (ASFA)。该算法利用萤火虫算法的随机性和全局搜索能力,确定指定数量的初始簇中心,然后利用 K-means 算法进行精确的簇划分。为避免算法陷入局部最优并提高求解精度,ASFA 采用自适应步长策略替代传统的固定步长。 通过在不同规模的标准数据集上进行实验,将 ASFA 与 K-means、GAK、PSOK 等算法进行比较,结果表明 ASFA 具有更优的聚类性能、稳定性和鲁棒性,并在寻优精度方面表现出显著优势。
数据挖掘
16
2024-05-20
自适应Delta调制具有可变步长的Delta调制可防止斜率过载-MATLAB开发
高级Delta调制器的运作方式与一般的Delta调制器类似,唯一的区别在于其幅度步长是可变的。如果先前的输出未能及时跟上输入信号,它将自动增加步长,防止所谓的“斜率过载”现象发生。这一技术特性在MATLAB开发中得到了广泛应用。
Matlab
11
2024-07-18
自适应波束形成代码
提供自适应波束形成的 MATLAB 代码,包括注释,保证运行成功。
Matlab
13
2024-05-13
自适应滤波技术应用
这篇资源提供了MATLAB代码,适用于处理非平稳信号的自适应滤波技术。
Matlab
11
2024-07-18
自适应GSK算法揭秘
了解自适应GSK算法(AGSK)前,先探索其基础——GSK算法。GSK算法灵感源于知识获取与分享的过程。
初级阶段:从小型网络(家人、邻居)获取知识,虽想法不成熟,但积极分享。
高级阶段:从大型网络(工作、社交)获取知识,相信成功者观点,积极分享以助人。
Matlab
17
2024-05-28
自适应谱聚类算法改进
通过提出一种自适应谱聚类算法改进方案,在传统谱聚类算法的基础上,通过自适应调整核函数参数和聚类簇数,提升了算法对任意形状样本空间的聚类性能,实验验证了改进算法的有效性。
数据挖掘
12
2024-05-25
Spark自适应缓存管理策略
Spark 框架一直挺受欢迎,但它在缓存管理上的能力还可以再强一点。比如,传统的 LRU 缓存替换算法,虽然常用,但有时候会影响执行效率,是对于重用度高的 RDD。在这里,有个挺有意思的策略叫做自适应缓存管理策略(SACM)。这个策略能自动选择缓存 RDD,避免重复计算消耗不必要的资源,基本上就是让 Spark 在任务执行时变得更加聪明。它通过任务的 DAG 结构来识别那些需要缓存的 RDD,而并行缓存清理算法还能清理掉那些不再需要的数据,节省内存。这也让内存利用更高效,保证了计算效率。简单来说,就是让 Spark 在面对复杂的并行任务时更加高效,避免了缓存管理上的瓶颈。如果你常用 Spark
spark
0
2025-06-10
matlab自适应滤波代码实现
这篇文章介绍了在matlab中实现自适应滤波器的算法,涵盖了牛顿法和最陡下降法的具体方法,对自适应滤波的学习具有实质性帮助。
Matlab
13
2024-08-22
自适应滤波第四版,MATLAB代码——非线性自适应滤波器
经典beamforming和自适应滤波的MATLAB源代码。由Paulo S.R. Diniz编著的《自适应滤波第四版(Adaptive Filtering_Algorithms and Practical Implementation 4th)》中的Nonlinear_Adaptive_Filters部分源代码。
Matlab
20
2024-07-12
自适应降噪算法 (sanc) - MATLAB 实现
sanc 函数采用自适应滤波方法,对信号 x 进行降噪处理。用户可指定滤波器长度 L 和适应率 mu。输出结果包含滤波器权重以及原始信号与滤波信号之间的误差。
Matlab
8
2024-05-31