概率工具
当前话题为您枚举了最新的 概率工具。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
OptiPt:概率选择模型工具箱
OptiPt 可用于拟合和测试多属性概率选择模型,支持 Bradley-Terry-Luce (BTL) 模型、按方面消除 (EBA) 模型和偏好树 (Pretree) 模型。OptiPt 主要功能包括:
简洁的模型设定方式
高精度参数估计
拟合优度检验
参数估计的协方差矩阵
参考文献
Wickelmaier, F. & Schmid, C. (2004). 一个 MATLAB 函数,用于从配对比较数据中估计选择模型参数。行为研究方法,仪器和计算机,36(1),29-40。 https://doi.org/10.3758/BF03195547
http://www.mathpsy.uni
Matlab
17
2024-04-29
探究概率图模型:FULLBNT工具箱
FULLBNT-1.0.4工具箱为MATLAB提供了丰富的功能,用于构建和分析贝叶斯网络。它支持精确推理和近似推理算法,可以进行参数学习和结构学习。研究者和开发者可以使用FULLBNT探索复杂的概率关系,并应用于各种领域,例如医疗诊断、风险评估和决策支持系统。
算法与数据结构
17
2024-04-29
wordhit Matlab开发单词生成概率工具
考虑以下问题:在一系列抛硬币中,HH还是TH更有可能首先出现?一只猴子平均需要多长时间才能打出“to be or not to be”这个短语?WORDHIT解决了任何大小合理的单词列表的一般问题。例如,wordhit('HH','TH') 返回[1/4,3/4],[P,T]=wordhit('HH','TH'),T = [0.5,2.5],T./P 条件命中次数[2,10/3],sum(T) 总击球时间[3],可选符号概率值(需要符号工具箱)。[~,t]=wordhit(repmat('H',1,5),'',sym('p')) (1+p+p^2+p^3+p^4)/p^5。该算法通过确定马尔可
Matlab
12
2024-08-17
随机事件及其概率概率建模入门
概率论的入门资料太多,想系统梳理一遍其实不容易。《随机事件及其概率》这篇内容就挺靠谱,结构清晰,讲得通俗,适合打基础或者查漏补缺。从最基本的随机事件讲起,像抛硬币、掷骰子这种经典例子它都有。方式比较贴近实际,比如事件的并、交、补这些集合运算,用生活场景理解起来还挺顺。后面几节对概率的定义、条件概率和事件独立性讲得系统。是条件概率的部分,用公式 P(A|B) = P(AB)/P(B) 引出了乘法公式,逻辑挺顺的,推导过程清楚。讲到全概率公式和贝叶斯公式时,配了完整公式,还有点小例子,如果你之前总觉得这些公式有点抽象,这部分蛮值得看几遍的。我觉得比较实用的点是,它还贴了几个配套资源。像这个 Opt
统计分析
0
2025-06-22
MATLAB数学建模统计与概率分布工具
数学建模中,MATLAB是一个超级好用的工具,尤其是在做统计和概率分布时。你可以用多内置的函数,比如计算不同分布的概率密度函数(betapdf、binopdf等)和累积分布函数(betacdf、binocdf等)。这些函数能你搞定各种分布的,操作起来也比较简单。更厉害的是,MATLAB还逆累积分布函数和随机数生成器,可以根据概率值推算原始数据或生成符合特定分布的随机样本,做模拟实验时有用。,MATLAB的统计工具箱真的是数学建模中不可或缺的利器。如果你还不熟悉,学习这些核心函数后,你会发现它能大大提高工作效率,复杂问题时简直得心应手!
Matlab
0
2025-06-13
Matlab概率统计实验应用
能够使用Matlab计算概率、均值和方差; 2. 能够执行常见分布的数值计算; 3. 能够利用Matlab进行期望和方差的区间估计; 4. 能够使用Matlab进行回归分析。
Matlab
7
2024-09-30
多种概率分布及其应用
均匀分布:随机变量取值在指定区间内均匀分布,用 U(a, b) 表示。
正态分布:随机变量取值呈钟形曲线分布,用 N(μ, σ²) 表示。
指数分布:随机变量取值呈非对称分布,无记忆性,用 Exp(λ) 表示。
Gamma 分布:随机变量取值呈非对称分布,用于表示服务时间和零件寿命,用 G(α, β) 表示。
Weibull 分布:随机变量取值呈非对称分布,用于表示设备寿命,用 W(α, β) 表示。
Beta 分布:随机变量取值在 (0, 1) 区间内,用于表示概率和比例。
算法与数据结构
15
2024-04-30
R语言计算t分布概率
已知X服从自由度为30的t分布,用R语言计算:1) P(X>1.96)2) P(X≤a)=0.01并与标准正态分布的计算结果进行比较。
统计分析
23
2024-04-30
Matlab在概率统计中的应用
Matlab在概率统计中,确实有图有真相。
Matlab
15
2024-07-25
概率分析软件-支持多次输入
在信息技术领域中,概率分析软件是数据分析和机器学习的关键组成部分,尤其在处理大规模随机数据时。这款名为\"概率分析软件-支持多次输入\"的程序专为计算事件发生频率而设计,用户可以指定多次数据采集的轮次或批次,极大地便利了模拟实验和分析独立重复试验的结果。该软件基于Java语言开发,充分利用了Java的标准库,例如Collections和Stream,以实现高效的数据处理。
算法与数据结构
16
2024-07-27