该算法利用过程历史数据自动进行数据挖掘,实现PID参数在线自整定。算法依据PID回路的动态响应特性,通过给定ε-不敏感损失函数和辨识信任度函数,从可行数据集中选取有效数据集,作为回路参数自整定的有效数据。为确保PID控制达到最佳性能和鲁棒性,提出了基于对象组进行IMC-PID参数整定的方法。该算法已应用于多个生产装置,实际投运结果表明,该算法简便易用,推广能力强,是PID参数整定算法中一种切实可行的算法。
基于数据挖掘实现IMC-PID在线自整定
相关推荐
MATLAB中PID参数整定仿真源码及仿真图下载
MATLAB中的PID控制器仿真是一个关键的研究领域,提供了相关的源代码和仿真图供下载使用。
Matlab
8
2024-07-29
基于MATLAB的一阶延迟系统PID控制器参数整定
本程序利用多种方法,实现了含延迟环节一阶系统的PID控制器参数计算,方法包括:
Ziegler-Nichols 方法
Cohen-Coon 方法
IMC 方法
Matlab
25
2024-05-30
在线信息服务数据挖掘框架实现
提出了一种基于在线信息服务平台的数据二次整合模型,并使用 VC 开发工具实现了二次挖掘的框架。
数据挖掘
15
2024-05-13
模糊自校正PID程序
提供一个用于控制系统的模糊自校正PID Matlab程序。该程序性能稳定,是控制领域的常用策略,供大家参考使用。
Matlab
15
2024-05-25
数据挖掘Coursera在线学习数据挖掘课程
这是Coursera提供的一门关于数据挖掘的在线课程。
数据挖掘
10
2024-09-25
在线时间序列数据挖掘优化
时间序列数据挖掘是数据分析中重要的分支之一,专注于从序列数据中提取信息和模式。在这个过程中,相似性度量是核心任务之一。欧几里得距离作为基本的相似性度量方法之一,具有线性时间复杂度,但对异常点敏感,且要求比较的序列长度相等。动态时间规整(DTW)作为另一种有效方法,能够测量不同长度时间序列之间的相似性,通过弯曲操作处理等长时间序列,使其匹配到相似趋势上。文章《在线和动态时间规整,用于时间序列数据挖掘》提出了一种加速DTW计算的方法,通过滑动窗口将长序列分割为短子序列,并提出了有效的DTW算法来测量子序列间的相似性。数值实验表明,该方法比传统DTW方法更快、更有效。文章还结合在线学习,将DTW应用
数据挖掘
11
2024-08-31
基于层次分析法和数据挖掘的砂型铸造工艺自评价模型研究
提出了一种结合层次分析法(AHP)和数据挖掘技术的砂型铸造工艺自评价模型。该模型首先利用AHP方法构建了多级指标体系,对影响砂型铸造质量的因素进行层次化分析,确定各指标权重。然后,利用数据挖掘技术对历史生产数据进行分析,建立预测模型,对砂型铸造工艺进行评价。
该模型具有以下优势:
层次分明,逻辑清晰: AHP方法能够将复杂的评价问题分解成多个层次,使评价指标更加清晰明确。
定量分析,客观评价: 通过数据挖掘技术对历史数据进行分析,能够克服传统评价方法的主观性,实现对砂型铸造工艺的客观评价。
预测性强,指导改进: 建立的预测模型可以对未来的生产情况进行预测,为工艺改进提供指导。
模型应用
该
数据挖掘
11
2024-06-26
FP-增长算法:基于SMILE的数据挖掘实现
FP-增长算法在数据挖掘领域的应用依托于SMILE (统计机器智能和学习引擎)。 SMILE是一个功能强大的系统,集成了机器学习、自然语言处理、线性代数、图形、插值和可视化等多个模块,为数据挖掘任务提供了高效且全面的支持。
数据挖掘
19
2024-05-15
DTU数据挖掘课程创建的在线Python项目
Online Python是一种供雇主使用的工具,使求职者能够提交他们的Python脚本进行评估。这些脚本在单独的Python解释器进程中运行,并且通过PyPy的沙箱功能安全执行。Online Python项目是DTU为02819数据挖掘课程开发的。
数据挖掘
15
2024-07-31