不确定数据聚类一直是数据挖掘领域的一个热门话题。今天跟聊聊挺不错的聚类算法——kd-means。这个算法对传统的ck-means进行了优化,它通过只计算部分质心的距离,大大提升了聚类的效率。是当数据量大的时候,kd-means的优势就显得,因为它能有效地减少计算量,提高速度。kd-means是基于kd 树索引的,所以用它来大数据集时适合。嗯,如果你需要高效聚类,可以尝试这个方法,尤其在大规模数据集上,效果还是蛮显著的。它的改进算法在多实验中都得到了验证,效果挺好的!如果你想深入了解,不妨看看相关的资料。