分层聚类算法的实现真的挺,尤其是用 Java 来做。这个项目了一个基础的分层聚类实现,适合想快速入门数据挖掘的朋友。你可以看到代码中定义了数据点存储和距离矩阵计算的方式,这样就能方便地计算出所有数据点的聚类结果。最值得注意的是,算法使用了最小距离点的索引来计算聚类,直观。其实这也蛮适合初学者,理解起来比较容易。嗯,如果你想深入理解分层聚类的原理,也可以结合其他相关资源一块看。
HierarchicalClustering分层聚类算法Java实现
相关推荐
DBSCAN聚类算法Java实现
利用DBSCAN聚类算法实现的核心思想是:遍历所有未访问点,若为核心点则建立新簇,并遍历其邻域所有点(点集A),扩展簇。若簇内点为核心点,则将其邻域所有点加入点集A,并从点集移除已访问点。持续此过程,直至所有点被访问。
算法与数据结构
24
2024-04-30
基于分层熵子图的聚类算法:LEGClust
J.M. Santos 等人提出的 LEGClust 算法是一种基于分层熵子图的聚类算法,该算法已发表在 IEEE TPAMI(第 30 卷,第 1 期,2008 年,1-13 页)。MATLAB 代码可用于实现该算法。
Matlab
11
2024-05-31
K-Means Java实现聚类算法
Java 写的 K-Means 聚类算法,结构清晰,代码也不啰嗦,挺适合刚入门或者要快速验证模型思路的场景。你可以看看它怎么初始化中心点,还有分类过程的迭代优化逻辑,挺直观的。
K-Means 的 JAVA 实现,逻辑比较清楚,文件结构也不复杂。Cluster、Point这些类写得还挺工整,方法注释也不多不少,刚好够看懂。调试的时候也省心,不用翻一堆依赖。
嗯,要是你用 Python 比较多,也可以顺便对比下Python 版本的实现。你会发现 Java 版有点像强类型的思路训练,还挺锻炼逻辑思维的。
另外还有个对比写得不错的资源,Java 和 Python 的实现对比,看完对两边的优势差异会更
统计分析
0
2025-06-30
CURE聚类算法实现
数据挖掘里的聚类算法不少,CURE 算法算是比较的那一类,抗噪能力强,聚类形状也不挑。推荐你看看这份 PPT,讲得挺详细,图示也清楚,思路梳理得比较顺。多个代表点+缩放策略的思路,在那种不规则分布、带噪声的数据时,表现还蛮稳定。你要是之前用惯了 K-means,第一次接触 CURE 会觉得思路不太一样,但看完这个文档应该就清楚多了。实现上也不算复杂,就是聚类前加了点小操作,比如先随机采样、再做层次聚类、挑点代表点压缩一下。Python写起来也蛮顺,推荐搭配下scikit-learn或NumPy练练手,效果直观。嗯,顺带一提,除了 CURE 之外,LSNCCP 算法也值得看看,聚类思路也挺有意思
数据挖掘
0
2025-06-16
DBSCAN算法Matlab实现聚类算法
DBSCAN 算法是一种基于密度的聚类算法,挺适合那些形状不规则的数据。在 Matlab 里实现 DBSCAN,可以帮你更轻松地发现不同形态的聚类,尤其在噪声数据时有用。核心思路是通过两个参数:ε(邻域半径)和minPts(最小邻居数)来定义一个点的密度。简单来说,如果一个点的邻域内有足够的点,那它就是核心点,核心点周围的点就会被聚在一起,形成一个聚类。实现这个算法的时候,你得数据,比如从 txt 文件读入数据,设置好ε和minPts这两个参数,选择合适的值才能得到靠谱的聚类效果。之后就是进行邻域搜索了,这一步比较重要,要用到 K-d 树之类的数据结构来加速查找。就是把聚类结果用不同颜色显示出
算法与数据结构
0
2025-06-11
Java与Python实现K-means聚类算法结果对比
K-means 聚类算法一直是数据中常用的一个技术,今天推荐的这个资源正好了 Java 和 Python 两种实现方式,挺适合那些想对比这两种语言的实现效果的开发者。它通过设计一个名为MyPoint的类来表示二维坐标点,并在此基础上进行 K-means 聚类。你可以看到从点的创建到聚类结果输出的全过程,适合用来学习和了解 K-means 的原理。
其实,MyPoint类的设计也蛮巧妙的,包含了距离计算等方法,方便用于计算每个点与其他点的距离。而且它的随机生成数据功能也挺实用,可以确保实验数据的复现性。,如果你也在做聚类,试试这个资源,你更深入地理解算法。还不错的资源!
统计分析
0
2025-06-13
OPTICS聚类算法MATLAB实现
这是一个基于密度的聚类算法OPTICS的MATLAB程序,来源于官方,经过测试好用。
数据挖掘
17
2024-05-21
Python实现Kmeans聚类算法
Python 写的 Kmeans 聚类算法代码,思路清晰,结构也比较简单,蛮适合拿来当入门练手项目的。用的是经典的鸢尾花数据集,k=3,每个样本4 维特征,分类目标也比较明确,方便调试。课程作业改的版本,逻辑直接,适合你快速掌握 Kmeans 的基本流程。像是怎么初始化质心、如何计算样本间的欧式距离,还有怎么判断收敛,代码里都有体现。讲到相似度的衡量,这里用的是“距离越小越相似”的逻辑,挺直观的。就像现实中会根据说话口音聚类人群,这里的聚类也是类似的思想。有意思的是,还提到了大规模用户数据的应用场景,比如微博推荐。这种从小样本练到大数据的思路,挺实用的。如果你刚好在研究聚类,或者准备复习模式识
算法与数据结构
0
2025-06-30
JavaWeb分层开发模板——Maven项目分层实现
本篇JavaWeb教程(四)将介绍基于分层开发思路的JavaWeb模板实现。该项目基于Maven构建,主要包括以下三个层次:
DAO层(数据访问层):负责与数据库进行交互,完成数据的增删改查操作。
Service层(业务逻辑层):处理业务逻辑,调用DAO层的接口并进行业务处理。
Domain层(实体类):定义项目中的实体对象,通常映射数据库表中的结构。
项目实现了与数据库的连接,提供对book表的增删改查功能,并且能够通过UI页面在网页上展示book表中的数据。
MySQL
12
2024-10-27