SVM算法和朴素贝叶斯分类算法在复杂数据分类中表现优异,但其缺点影响了分类效果。传统数据挖掘算法无法满足海量数据处理需求。为解决这些问题,改进了朴素贝叶斯算法,提出SVM_WNB分类算法,并在Hadoop云平台上实现并行处理,从而处理大数据。实验表明,改进后的算法在准确性和效率上有显著提升,对大数据分类有显著效果。
论文研究-基于Hadoop平台的SVM_WNB分类算法的研究.pdf
相关推荐
研究论文-基于优化遗传算法的快速自动试卷生成算法研究.pdf
为了改进现有的试题管理系统在试卷生成环节中的速度和质量,结合粗粒度并行遗传算法与自适应技术,提出了一种自适应调整种群迁移的快速并行遗传算法。从试题库编码方案、遗传策略、适应度函数的优化、交叉变异算子的选择和自适应度值函数的选取等多个方面进行设计,取得了显著的适应度提升。采用并行策略显著提高了算法的运行速度。仿真实验显示,该算法成功应用于自动组卷,提高了组卷效率和成功率,具备广泛适用性。
数据挖掘
15
2024-07-26
论文研究-基于遗传的PAM算法
从给定文件的信息中,我们可以提取和总结出以下IT知识点: 1. 数据挖掘的概念与发展:数据挖掘是通过算法搜索大量数据中隐藏信息的过程,目的是为人类服务。随着数据量的急剧增长,数据挖掘成为研究热点,备受关注。在数据挖掘领域,聚类是一个核心工具,其研究具有特殊重要性。 2. PAM算法的介绍与应用场景:PAM(Partitioning Around Medoids)算法是经典的K-中心聚类算法,通过选择簇中的中心点来代表整个簇。PAM算法对异常值和孤立点有良好的鲁棒性,并能处理不同类型的数据点。尤其适用于小数据集,但对输入参数较为敏感。 3. 遗传算法的概念与优势:遗传算法是一类模仿生物进化过程的
数据挖掘
11
2024-10-10
基于Hadoop平台的大规模文本分类并行化研究
文本分类作为信息检索与数据挖掘的核心技术和研究热点,在近年来得到了广泛关注和快速发展。随着文本数据量的指数增长,有效管理这些数据的需求日益迫切。在分布式环境下,采用基于Hadoop平台的TFIDF分类算法,这是一种简单而有效的文本分类算法,基于向量空间模型和余弦相似度进行分类。通过对两个数据集的实验验证,结果表明这种并行化算法在大数据集上表现出色,具有实际应用的潜力。
数据挖掘
20
2024-07-14
基于kmeans算法的图像块分类研究
本研究利用Matlab自带函数kmeans对一幅图像进行了8*8图像块的分类分析。
Matlab
9
2024-08-22
研究论文基于Hadoop的K-Means聚类算法优化与实施
针对传统K-Means聚类算法在处理海量数据时的局限性进行了探讨,特别是其对异常离群点数据的敏感性。结合Hadoop云计算平台和MapReduce并行编程框架,我们提出了一种优化方案,以改善聚类效果和处理效率。
数据挖掘
15
2024-08-14
Apriori算法研究论文
这篇论文探讨了Apriori算法在数据挖掘中的应用。
数据挖掘
14
2024-07-16
论文研究-基于相容关系的新型聚类算法
聚类分析是数据挖掘中的重要研究领域,传统的聚类算法通常划分为硬聚类和模糊聚类两类。提出一种基于对象集上的相容关系的新型聚类算法,通过极大相容簇对数据对象集进行分类。该算法使得同一对象可以属于不同的簇,每个簇具有独特的成员对象,从而实现了既不同于传统硬聚类也不同于模糊聚类的聚类效果。实验结果进一步验证了该算法在聚类分析中的合理性。
数据挖掘
8
2024-08-04
基于距离学习的集成KNN分类器研究论文
近年来,数据挖掘在信息产业界引起了极大的关注,主要由于数据量巨大且具有广泛的适用性,急需将这些数据转化为实用的信息。于飞和顾宏研究了基于距离学习的集成KNN分类器,探索其在数据处理中的潜力。
数据挖掘
14
2024-07-17
研究论文-基于GPU的朴素贝叶斯算法在文档分类中的应用
朴素贝叶斯算法是数据挖掘中重要的一部分,探讨了其在GPU上的设计与实现。分类算法通常使用高维向量来表示特征值,广泛应用于现实生活中。
数据挖掘
12
2024-07-15