在本示例中,我们将展示如何使用WEKA对IRIS数据集进行聚类分析。
在WEKA中文教程中对IRIS数据集进行聚类分析示例
相关推荐
WEKA中文教程IRIS数据集分类示例
IRIS 数据集的分类示例,用的是WEKA工具,操作简单、界面友好,蛮适合刚入门机器学习的同学。数据清洗啥的不用太多操作,点点按钮就能跑结果,挺适合做课堂演示或者小项目练手的。
用J48决策树或者NaiveBayes模型跑一遍,准确率还不错,分类结果可视化也方便。你可以换着算法试试,像RandomForest这种集成模型,用起来也没门槛,拖一下就能上。
如果你还不太熟WEKA,建议看看这几个教程:WEKA 分类模型评估教程、WEKA 数据挖掘:分类与回归详解,都有中文,图文还挺详细。
顺带提一句,Iris数据本身结构清晰,特征不多但区分度挺好,适合用来测试各种分类器。你甚至可以拿去和BP 神经
Hadoop
0
2025-06-13
WEKA数据集WEKA中文教程
WEKA 的.arff 数据集用起来其实蛮顺手的,尤其是你用 WEKA 做分类、聚类那类实验的时候,直接拿来就能跑,基本不用折腾太多格式转换。它的数据结构就是那种类似 Excel 的二维表,不过多了点@开头的标签信息,看着有点眼熟但又不太一样。
ARFF 格式的文件其实就是带结构的文本文件,上面是属性信息,下面是数据本体。你要自己写也不难,手撸几个字段就能跑。要是你懒得写,网上也有多现成的,比如 UCI 那些。
推荐你看看ARFF 数据集详细解读这篇,里面讲得比较细,还有格式示例,照着改就行了。
如果你想拿些练手数据跑跑模型,像20 个 Weka 机器学习数据集挺全的,分类、回归啥的都有,直接
Hadoop
0
2025-06-11
WEKA中文教程进行ROC曲线分析
ROC 的入门,WEKA 的工具确实挺实用的,尤其是做分类模型的时候,ROC 曲线能帮你快速看出模型效果怎么样。WEKA 里直接就能出图,点几下就搞定,操作门槛低,适合想快速上手的你。
WEKA 的可视化功能比较直观,点开分类结果后,用右键就能找到Visualize threshold curve,方便地画出 ROC 曲线。你能看到True Positive Rate和False Positive Rate之间的变化,简单一看,模型行不行就有底了。
如果你想搞清楚 ROC 每条线背后的逻辑,这篇详细指南挺值得看,里面讲了每个参数怎么影响图形,还带了实际案例,蛮有的。
顺便提一下,如果你想了解下
Hadoop
0
2025-06-17
WEKA中文教程保存聚类结果
保存聚类结果的操作,在用 WEKA 做完聚类后还挺关键的。尤其你要复用结果或后续做可视化,最好一步到位。WEKA默认只在控制台里输出结果,其实可以通过点几下菜单把聚类结果导出来,格式还比较多,像.arff、.csv都行,拿来喂别的模型也方便。
菜单栏的Cluster里,先设置好模型,再在“Result list”里右键聚类结果,选“Save result buffer”,就能保存了。保存的是类似控制台的文字结果,如果你想导出带标签的数据集,还得勾选“Output cluster assignments”。嗯,挺容易漏这个选项的,注意一下哦。
再进阶一点,可以搭配一些工具做可视化,比如你可以看看
Hadoop
0
2025-06-14
karate数据集的聚类分析
karate数据集包含四个文件:karate.gml、karate.paj、karate.png和karate.txt。这些资源是经上传者整理后发布的网络资源,仅供学习交流使用,不涉及任何商业利益。资源设置为免费下载,如需积分请与上传者联系。
数据挖掘
10
2024-08-23
MATLAB中应用k-means和ISODATA算法对鸢尾花数据集进行聚类分析
MATLAB中,k-means算法和ISODATA算法是常见的无监督学习方法,用于鸢尾花数据集的聚类分析。鸢尾花数据集包含三个品种的鸢尾花样本,每个样本有四维特征:花萼长度、花萼宽度、花瓣长度和花瓣宽度。k-means算法迭代地将数据分配到预定义的簇中,以最小化簇内数据点的差异。ISODATA算法结合了k-means和动态调整簇数的概念,适用于数据分布不均匀或噪声较大的情况。在MATLAB中,你可以使用kmeans函数执行k-means算法,而ISODATA算法则需通过循环实现。数据预处理包括标准化,以确保所有特征在同一尺度上。聚类结果可以通过多种指标进行评估,如轮廓系数和Calinski-H
算法与数据结构
8
2024-10-14
KMeans聚类分析案例_顾客数据集
KMeans聚类分析案例——顾客数据集
导入数据集:加载顾客数据集,对数据进行预处理,清洗缺失值和异常值。
特征选择:根据业务需求选择与顾客行为相关的特征,如年龄、收入、购买频率等。
标准化处理:使用标准化方法处理特征,确保数据尺度一致。
选择K值:通过肘部法则或轮廓系数确定最佳的聚类数K。
聚类建模:应用KMeans算法进行聚类,得到不同类型的顾客群体。
聚类分析:分析每个聚类的特征,帮助企业制定个性化营销策略。
可视化展示:使用降维技术如PCA进行可视化,方便观察不同顾客群体的分布情况。
数据挖掘
14
2024-11-07
WEKA中文教程
功能丰富的WEKA是做数据挖掘时比较常用的工具。是它的experiment 模块,挺适合跑批量实验的。中文资料不多,找到一个还不错的中文教程,讲得挺清楚,尤其是参数设置那块,贴心。
界面是比较老派那种,但逻辑还算清晰,适合新手慢慢摸索。教程里一步一步带你配置实验,比如怎么加多个数据集,怎么切换算法,还有怎么批量导出结果,细节都照顾到了。
用过 sklearn 的话,你会发现 WEKA 的流程更像是图形界面版的 pipeline,点点就能跑模型,适合不想写太多代码但又想看效果的场景。
有一点小建议:跑完实验记得保存下设置,WEKA 有时候容易忘了你改过什么。还有就是路径别用中文,容易出错。
如果
数据挖掘
0
2025-06-17
数据挖掘工具-聚类分析指南(weka教程)
聚类分析是将对象分配到不同的簇中,以使同一簇内的对象相似,不同簇间的对象则不相似。WEKA的“Explorer”界面提供了多种聚类分析工具,包括支持分类属性的K均值算法SimpleKMeans,分类属性的DBSCAN算法DBScan,基于混合模型的EM算法,K中心点算法FathestFirst,基于密度的OPTICS算法,概念聚类算法Cobweb,以及基于信息论的聚类算法sIB。另外,XMeans算法能够自动确定簇的个数,但不支持分类属性。
数据挖掘
14
2024-07-16