功能丰富的WEKA是做数据挖掘时比较常用的工具。是它的experiment 模块,挺适合跑批量实验的。中文资料不多,找到一个还不错的中文教程,讲得挺清楚,尤其是参数设置那块,贴心。
界面是比较老派那种,但逻辑还算清晰,适合新手慢慢摸索。教程里一步一步带你配置实验,比如怎么加多个数据集,怎么切换算法,还有怎么批量导出结果,细节都照顾到了。
用过 sklearn 的话,你会发现 WEKA 的流程更像是图形界面版的 pipeline,点点就能跑模型,适合不想写太多代码但又想看效果的场景。
有一点小建议:跑完实验记得保存下设置,WEKA 有时候容易忘了你改过什么。还有就是路径别用中文,容易出错。
如果你是做机器学习教学或者需要做模型对比测试的场景,可以试试这个教程,蛮省事的。哦对了,感兴趣可以顺手看看这些:
WEKA: 数据挖掘利器 和 WEKA 软件简介 - 数据挖掘工具 WEKA 概述,内容也比较靠谱。