机器学习工具

当前话题为您枚举了最新的 机器学习工具。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

Weka 3.5.8机器学习工具
weka 的安装包里自带源码,weka-src.jar解压就是,想看内部实现或者自己改点东西方便。机器学习算法基本都有,分类、回归、聚类,甚至关联规则挖掘都支持,挺全的。界面虽然有点老,但操作上手快,试个算法啥的也就几分钟事儿。 源码结构比较清晰,接口设计得还不错。如果你打算自己实现算法,参考它的接口文档是个不错的起点。比如你要自己写个分类器,继承Classifier类再实现几个方法就差不多能跑了。想深入点的,还可以做些可视化工具扩展,思路上也挺适合抄的。 有一本书《数据挖掘:实用机器学习技术》配套讲得细,里面的例子几乎都能直接跑在 weka 上。哦对了,weka是新西兰的一种鸟,工具名也挺有
机器学习资源
感谢大牛整理的机器学习资源:https://github.com/Flowerowl/Big_Data_Resources#大数据-数据挖掘
机器学习经典
McGrawHill出版社发行的.Tom著作的机器学习经典,涵盖数据挖掘通用算法。
机器学习实战:工具与技术
虽然原版书籍对于刚接触机器学习的人来说可能有些挑战,但配套的Weka平台提供了一个实践学习的便捷途径。
Weka机器学习工具的详细介绍
Weka是一个集成了各种机器学习算法的工具包,适用于执行数据挖掘任务。这些算法可以直接应用于数据集,或者在自定义的Java程序中调用。Weka提供数据预处理、分类、回归、聚类、关联规则和可视化等多种工具。此外,还可以基于Weka开发新的机器学习模型。
scscikitikit-le-learnarn机器机器学习学习库工具包
Python 的机器学习工具包里,scikit-learn算是比较经典、也蛮省心的一套。基于NumPy、SciPy和matplotlib,多入门任务基本全能搞定,比如分类、回归、聚类那类活。安装方便,文档也挺全,适合你写原型、也适合跑实验。 模型训练和数据预基本是它的主打,像train_test_split、StandardScaler这些常用工具全都有。响应也快,代码也不臃肿。用熟了之后,再配合Pandas、XGBoost,效率更高。 平时你要是写点数据挖掘项目,或者搞点预测模型,scikit-learn.zip这种资源就挺值得收藏的。压缩包里包含完整的包结构,用的时候直接解压就能跑,不用到
决策树算法:机器学习经典工具
本教程提供利用 C 语言编写的决策树算法实现。决策树在分类、回归和集成学习(如随机森林)等领域具有广泛应用。
矩阵学习与机器学习衔接
吴恩达矩阵学习是针对机器学习所设计的,可以帮助你更好地理解线性代数在机器学习中的应用,进而理解更复杂的机器学习概念。
机器学习入门介绍
机器学习的资源我也翻过不少,最近发现一篇内容挺扎实的入门资料,适合你这种想系统梳理一下基础概念的人。讲得比较细,从什么是训练集、验证集、模型这些基本术语,到监督学习、无监督学习、强化学习这几类常见类型,再到实际用的算法,像是 SVM、KNN、PCA 全都有。数据怎么准备、模型怎么选、怎么训练、怎么评估……整个流程讲得还蛮清楚的,没那么学术腔,比较接地气。如果你是前端但对 AI 方向感兴趣,这篇文章算是个不错的起点。另外它还贴心地列出了一些框架工具,像 Scikit-Learn、TensorFlow、PyTorch 都有,适合初学者入门的时候做个对比参考。如果你手上项目有需要做简单分类或数据预测
Matlab无法运行代码问题 - 自制机器学习国内机器学习
对于此存储库的Octave/MatLab版本,请检查项目。该存储库包含用Python实现的流行机器学习算法的示例,并在后面解释了数学原理。每种算法都有交互式的Jupyter Notebook演示,使您可以使用训练数据、算法配置并立即在浏览器中查看结果、图表和预测。在大多数情况下,解释是基于Andrew Ng的。这个仓库的目的不是为了实现机器使用第三方库“单行”,而是练从头开始执行这些算法和获得更好的每种算法背后的数学理解学习算法。这就是为什么所有算法实现都称为“自制”而不是用于生产的原因。