常数变易法
当前话题为您枚举了最新的 常数变易法。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
基于 ICA 的异常数据挖掘算法研究
提出了基于影响函数的异常数据检测方法,该方法通过投影分析来分离观测数据中的异常成分,有效消除脉冲噪声。实验结果验证了该方法在异常数据检测方面的可靠性和有效性。
数据挖掘
11
2024-05-28
异常数据检测方法综述(2009年)
研究了数据挖掘中异常点检测的通用方法,并分析了它们的优缺点。还探讨了在高维和基于聚类的异常点挖掘中的应用情况,希望为进一步改进提供基础。
数据挖掘
12
2024-07-16
超越黄金比例:探索自然常数的新关系
数学常数 π、e 和黄金比例 φ 之间的联系长期以来一直吸引着数学家和科学家。这些常数深深植根于自然界,并在各种自然现象中发挥着至关重要的作用。黄金比例,通常在自然和人工制品中观察到,长期以来一直被认为是美学和谐和自然平衡的体现。
然而,最近的研究表明,一些自然量可能表现出与方程 ln(π/x) + 1 = x 的解更密切的关系,而不是黄金比例方程 (1/x) + 1 = x。这一发现为理解这些基本常数错综复杂的相互作用及其在塑造我们周围的世界中的作用开辟了新的途径。
Matlab
13
2024-05-27
CODATA 2006物理常数类MATLAB调用工具
CODATA 2006 的物理常数类是个挺实用的小工具,尤其是你在用 MATLAB 搞科研或者工程建模的时候。它把普朗克常数、光速、阿伏伽德罗这些经典值全都打包好了,调用方便,查起来也快。你不用到处找表格,直接在类里getConstant('c')一下,光速就出来了,连不确定度都有。单位换算功能也挺贴心,比如你习惯用eV,它能直接转成J。CODATA2006 类的结构比较清爽,CODATA2006.m是主文件,基本功能都集中在这。初始化之后你可以自由查值、做换算,甚至还能写点脚本测试,比如计算某个公式用到的几个常数,精度也够用。还有一个亮点就是更新机制——虽然是 2006 版的,但它留了接口,
Matlab
0
2025-06-14
煤样吸附常数影响瓦斯抽采效果评判
不同取样点的吸附常数(a、b值)差异较大,导致残存瓦斯含量计算结果差异显著。通过对影响因素分析,建议通过实测统计确定一个标准的a、b值,减少测定数量,保证抽采效果评判准确性。
统计分析
23
2024-05-15
使用混沌引力常数改进引力搜索算法
这项研究利用混沌图案嵌入到最新的基于人口的元启发式算法——引力搜索算法(GSA)的引力常数(G)中。此外,还引入了一种自适应归一化方法,以确保从探索阶段平稳过渡到开发阶段。为了评估基于混沌的GSA算法在探索和利用方面的性能,研究使用了十二个有偏差的基准函数作为案例研究。
Matlab
17
2024-07-24
牛顿法改进
牛顿法是一种求根算法,它通过迭代过程逼近函数的根。该改进算法利用二阶导数信息提高收敛速度。
Matlab
12
2024-05-15
解读分箱法
分箱法是一种数据平滑技术,它通过将相邻数据点分组到“箱”中来实现。每个箱的深度代表其中包含的数据点数量,而箱的宽度则表示该箱所覆盖的值的范围。
算法与数据结构
13
2024-05-23
Web日志异常数据挖掘算法与应用
Web 日志文件的异常检测一直是个挺头疼的活儿,尤其数据量大的时候,手动基本不现实。这篇文章用比较实用的方法搞定了这个事儿,用的是基于距离的离散统计法,还加了个综合统计法,搭配校园网的实际日志跑了一圈,结果还不错。
离散统计法的好处就是上手快,思路也简单——算距离,看谁“跳得”最远,谁就是异常。比如访问量、响应时间这些指标,拉一条中位线,谁偏得离谱谁就危险。用Python搞个小脚本跑一下,也就几分钟的事儿。
综合统计法就更进一步了,多个维度一起看,比如IP 分布、访问频率、页面路径,交叉着算。不仅能找出“跳得远的”,还能看出“跳得精的”。这种方法对防爬、防刷还蛮有用的,搭配下ELK那一套也挺顺
数据挖掘
0
2025-06-29
鉴别法与集群法的异同数据分类分析
鉴别法与集群法有多相似之处,但又各有特点。鉴别法基于事先已知的类别,通过对已标记样本的属性,寻找最有效的分类函数。比如你手头有一些草本植物和木本植物的样本,鉴别法就能帮你通过它们的属性去推测分类。而集群法就不同了,它假设不知道分类,完全依靠样本的特征去自动分组,像是数据中没有任何标签的情况下,它能自己‘找’出类别。两者虽然都用于分类,但原理和应用场景完全不一样。如果你有分类任务,需要事先知道类别,选择鉴别法;如果没有预设类别,集群法是个更合适的选择。
统计分析
0
2025-06-24