网络视频

当前话题为您枚举了最新的 网络视频。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

网络视频拷贝检测改进方法
基于核心区域顺序度量特征和转换距离,提出了快速高效的视频拷贝检测方法。通过统计分析真实网络拷贝视频特点,选取稳定核心区域提取顺序度量特征,并设计基于最小转换代价的度量标准和快速匹配方法。实验验证了该方法在真实网络和 MUSCLE-VCD-2007 数据上的有效性。
使用Matlab开发网络摄像头视频色彩追踪系统
Matlab开发网络摄像头视频色彩追踪系统,利用AVI视频进行色彩追踪。
Matlab影像叠加代码烹饪视频的隐藏式字幕神经网络
Matlab影像叠加代码:egg:用于烹饪视频的隐藏式字幕神经网络是计算机视觉领域的研究热点。该项目通过多级管道分析烹饪视频,以提取细节,改进当前在Youtube和Vimeo等网站上实施的字幕系统。结合光学字符识别、对象识别神经网络和序列到序列学习技术,该项目从视频中提取信息,生成更优质的字幕。这项工作显示了在不需要更多培训的情况下,通过整合现有技术,创建领域特定的专业知识的潜力。
基于网络数据挖掘的移动视频客户数据支撑体系
如果你在做移动视频平台的数据,挺推荐了解一下这篇论文《基于网络数据挖掘的移动视频客户数据支撑体系》。它了如何通过数据挖掘技术来提升视频平台的用户行为,你从海量数据中提取用户的兴趣和需求,进而个性化服务。它提出的系统框架涉及数据收集、预、挖掘建模等多个环节。对于那些想要把数据转化为精准营销和用户体验的开发者来说,挺有参考价值的,是如果你也在做大规模的数据,建议看看。数据的技术、挖掘算法模型比如分类、聚类、关联规则学习等都有涉及,可以你更加高效地理解用户行为和需求。作者的研究也给了一些思路,如何通过网络数据挖掘,平台应对用户需求增长的挑战。
MMGCN多模态图卷积网络微视频个性化推荐Pytorch实现
MMGCN 是一个蛮有意思的多模态图卷积网络实现,用来做微视频个性化推荐。它通过不同的模态数据,像是视频内容和用户行为,来增强推荐的准确性,挺适合做大规模的推荐系统。实现是基于 Pytorch 的,代码结构清晰,注释也到位。如果你正好在做类似的推荐系统,不妨看看这个项目,估计能给你不少灵感哦。
网络视频传输关键技术多媒体数据处理专题课件
基于内容的检索方式,挺适合做多媒体搜索相关项目。像图文信息融合、相似性检索这些关键词,听着就知道和多媒体数据脱不了干系。实际用起来,能搞图像、音频、文本之间的智能匹配,效果还不错。 相似性度量部分,嗯,涉及到马氏距离、Python相似性计算,还有matlab的 SNR,想跑个图像对比或者音视频相似性测试,这几个资源挺能用。比如Python脚本,改改参数就能跑。 多媒体信息融合这块,推荐看看行业分类设备装置的地标信息检索那篇,数据挖掘味挺重。做视频内容推荐或者广告推送的,你可以借鉴下它的多源数据思路。 如果你是做网络视频传输相关的,像流媒体优化、多媒体检索这些方向,强烈建议先过一遍这些专题课件,
Matlab开发视频剪辑为子视频
此功能允许用户将输入的视频按需分割为多个子视频。用户可通过函数输入或GUI控制(使用imrect函数)定义每个片段的尺寸。这一功能可以看作是concatVideo2D的补充,特别适用于需要一次处理多个子视频的场景。与Matlab的imcrop函数结合使用,可以通过apply2VideoFrames.m函数实现类似的效果。
基于区域卷积神经网络的手术视频工具识别与技能评估
随着技术进步,深度学习方法在外科手术领域展现出巨大潜力。我们引入了基于区域卷积神经网络的方法,能够精确识别胆囊切除术视频中的手术工具,从而深入分析工具的使用和运动方式,有效评估外科医生的技能水平。我们还创建了新的数据集m2cai16-tool-locations,扩展了现有的m2cai16-tools数据集,证明了该方法在工具检测和定位任务中的有效性。通过模型提取工具使用时间表、运动热图和工具轨迹图,为外科技能的客观评估提供了新的性能指标。
基于大数据技术的网络视频处理系统设计优化方案
随着互联网技术的进步和带宽的急速增加,以及视频处理技术和采集设备的不断发展普及,网络视频的数量和种类迅猛增长。传统的视频处理技术已经不能满足当前需求,成为处理海量网络视频的瓶颈。介绍了一种基于大数据技术的新型网络视频处理系统,采用先进的视频内容识别方法,显著提升了处理效率和吞吐量,同时减少了人工识别的工作量,满足了对海量网络视频处理的需求。
Oozie教程视频
百度网盘中提供Oozie视频教程,提取码:提取码。