离群点挖掘
当前话题为您枚举了最新的离群点挖掘。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
离群点挖掘研究综述
研究离群点挖掘在欺诈检测、入侵监测等领域的应用。
概述离群点挖掘在数据库领域的进展。
总结并对比现有离群点挖掘方法。
展望离群点挖掘未来的发展方向和挑战。
数据挖掘
10
2024-05-12
基于Z曲线的新型离群点挖掘算法研究
提出一种基于密度的快速离群点查找算法——Z曲线离群点挖掘算法(ZOD)。该算法通过Z曲线将空间分割成等大小的网格,并沿曲线方向对网格进行排序,将网格中的点映射到一维空间,有效克服了传统网格算法的高维问题。此外,引入局部偏离指数来衡量离群点的偏离程度,具有高精度和可度量的优点。理论分析显示,ZOD算法在性能上优于传统基于密度的算法;实验结果表明,该算法在处理高维数据时具有显著的效率和处理效果提升。
数据挖掘
14
2024-09-01
基于自组织映射的离群数据挖掘集成框架研究
针对传统基于距离的离群数据挖掘算法存在的不足,本研究提出了一种全新的基于自组织映射(SOM)的离群数据挖掘集成框架。该框架具备可扩展性、可预测性、交互性、适应性以及简明性等优势。通过实验验证,基于 SOM 的离群数据挖掘方法展现出较高的有效性。
数据挖掘
13
2024-05-25
数据挖掘核心知识点总结
数据挖掘的核心知识点总结得挺到位的,尤其是关联规则那块,啤酒和尿布的例子真是经典中的经典,讲得又清楚又接地气。评估分类算法的部分也蛮实用,用警察抓小偷的比喻,一下就明白 Precision 和 Recall 的区别了。还有聚类和 KDD 那些内容,案例也比较贴近实际,适合入门和复习。如果你最近在做数据项目,或者准备考相关证,那这份资源还挺值得一看。
算法与数据结构
0
2025-06-17
小簇聚类中的离群点检测方法
利用聚类技术检测离群点的一种方法是丢弃远离其他簇的小簇。通常情况下,这个过程可以简化为移除小于某个最小阈值的所有簇。虽然可以与各种聚类技术结合使用,但需要设定最小簇大小和小簇与其他簇之间距离的阈值。此外,这种方法对于聚类数量的选择非常敏感,因为很难将离群点的得分附加到对象上。在图18中,当聚类簇数K=2时,可以清楚地看到一个包含5个对象的小簇远离了大部分对象,可能被视为离群点。
算法与数据结构
16
2024-10-03
基于蚁群算法的离群数据挖掘新技术研究与应用
离群数据挖掘在数据挖掘中具有重要意义。利用蚁群算法的强大鲁棒性,改进了现有的聚类方法。基于此,结合聚类分析和蚁群算法的特定参数,提出了一种全新的基于聚类的离群指数定义。成功地实现了离群数据挖掘的流程,并进行了编程实现。采用这一方法对流程企业的大量历史数据进行分析,有效优化了设备运行并实现了故障预警。
数据挖掘
21
2024-07-17
基于 TinyXML 的离群点检测操作指南
基于 TinyXML 的离群点检测操作指南
全局离群点检测
图 18.12 展示了全局离群点检测的气泡图。
局部离群点检测
“Local Outlier Factor”操作符用于执行基于本地的离群点检测。操作流程如图 18.13 所示,检测结果如图 18.13 所示。
算法与数据结构
19
2024-05-25
一种基于蚁群算法的离群数据挖掘方法研究与应用2006年
离群数据挖掘的老问题,用蚁群算法整出了点新花样。这个 2006 年的方法,蛮有意思的,挺适合搞流程数据的朋友瞧瞧。聚类的方式不新,但它把蚁群算法的参数搞进来了,鲁棒性一下子就上去了。还定义了个新的离群指数,用起来比较灵活,跑设备数据也挺稳的。程序已经搞定了,MATLAB实现,能直接拿来流程行业的大批历史数据。你要做设备预测性维护或者异常检测,这套还挺管用的,响应也快。顺手放几条你感兴趣的资源,像蚁群算法 Matlab 源码、LOF 算法离群检测,都还不错,能配合着玩。如果你最近在折腾流程数据,或者就是想试点不同的离群检测思路,可以试试这套蚁群+聚类的组合玩法,代码也不复杂,适合上手搞点实验。
数据挖掘
0
2025-06-17
深入解析大数据挖掘核心知识点
大数据挖掘的核心知识点详解
一、大数据挖掘概览
大数据挖掘是指从海量数据中提取有价值的信息和知识的过程。随着互联网技术的发展和普及,每天产生的数据量呈指数级增长,如何从这些海量数据中提取出有用的信息成为了企业和研究者关注的焦点。
二、分布式文件系统与MapReduce
分布式文件系统:在处理大数据时,传统的文件存储方式已无法满足需求。分布式文件系统(如Hadoop HDFS)通过将数据分割成多个块并分布在网络中的不同节点上进行存储,从而实现大规模数据的高效存储与访问。
MapReduce:是一种编程模型,用于大规模数据集的并行运算。它将复杂的计算任务分解为Map(映射)和Reduce
数据挖掘
12
2024-10-31
matlab点积与点商学习最佳教程
matlab点积与点商是数学和工程学中重要的概念,对于理解线性代数及其应用至关重要。
Matlab
14
2024-07-29