协同感知

当前话题为您枚举了最新的协同感知。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

空间众包中任务分配的协同感知
空间众包中协同感知任务分配
简单感知器Matlab中的基础感知器开发
这是教科书《神经网络与机器学习》中基础感知器的一个示例。
MATLAB中的单层感知器和多层感知器示例
MATLAB中的人工神经网络实例包括单层感知器,可用于线性可分问题,以及多层感知器,适用于复杂分类和系统识别,例如鸢尾花分类问题。
CollaborativeDeepLearning TensorFlow协同推荐实现
用于推荐系统的协作深度学习代码,作者用 TensorFlow 做了个还挺清爽的实现,整体逻辑比原始 CDL 版本简化不少,适合想快速上手的你。训练用 Python 跑,评估还得回 Matlab 操作下,算是多语言混合玩法。代码写得比较直白,预训练和主模型拆得也清楚。要注意,这套代码主要用于演示用途,别拿它去跑线上服务哈。如果你想看完整版的 Matlab 代码或 MXNet 的轻量实现,文档里也都贴了链接,资源还是挺齐全的。
cscoder Matlab压缩感知仿真
压缩感知领域的老朋友OMP 算法,用 Matlab 来跑挺顺手的。cscoder这个资源就专注做了一件事:把 1-D 信号的压缩感知流程整明白,代码也写得清晰。用到的是正交匹配追踪法(OMP),一步步找稀疏解,把原始信号还原回来。别看是 Matlab 脚本,逻辑挺严谨,适合初学者理清整个信号恢复流程。 里面的CS_OMP.m文件,从信号生成、测量矩阵构造、到压缩观测、OMP 重建,全流程都有,而且关键步骤都有注释。像测量矩阵、稀疏向量这些概念,跑一遍代码就懂。你可以自己改参数,比如调稀疏度、压缩比,看看重建效果怎么变。 最棒的是,它挺适合用来做毕业设计 demo 的,逻辑完整、结果直观,还能加
协同过滤商品推荐系统
构建商品推荐系统,利用协同过滤算法,根据用户画像及购买历史,推荐相关商品,为用户提供个性化购物体验。
FEKO与matlab的协同应用
利用电磁兼容仿真软件FEKO与matlab协同设计天线。
SQL优化协同提升系统效率
SQL 性能的提升啊,真的不是一个人能搞定的活儿。开发、DBA、系统管理员、运维,得配合到位才行。谁来调整系统?还真得看情况,但你只要搞清楚数据怎么流,SQL 写得规不规范,系统监控有没有跟上,基本就能一大半的问题。 应用设计人员的设计要让别人一看就懂,数据是怎么从前端一路走到库里的,结构清晰才能避免调试时抓瞎。 开发人员写 SQL 时别乱搞,明确一下用的查询策略,不期 DBA 看都看不懂,优化就更别提了。 DBA也不轻松,得盯着系统跑,及时发现哪个语句拖了后腿,有问题就得拉开发开会,一起排查。 运维负责的硬件、软件信息也得同步出来,比如服务器负载啊、磁盘读写啊,哪怕是 IO 瓶颈也要及时反馈
压缩感知技术Cosamp的应用
最新的压缩感知方法,如Cosamp,正在被广泛应用于信号和图像重建领域。
Hadoop与Hive协同配置指南
Hadoop与Hive协同配置指南 本指南涵盖Hadoop 2.8.4版本(hadoop-2.8.4.tar.gz)和Hive 2.3.3版本(apache-hive-2.3.3-bin.tar.gz)的协同配置步骤。 准备工作: 确保系统已安装Java环境(版本1.7或更高)。 下载Hadoop 2.8.4和Hive 2.3.3的二进制文件。 Hadoop配置: 解压Hadoop,并将其放置在合适的目录下。 编辑Hadoop配置文件,包括core-site.xml,hdfs-site.xml,mapred-site.xml和yarn-site.xml,设置Hadoop集群的相关参数,如