数据挖掘与数据分析在信息技术领域密切相关,尤其在复杂决策和预测分析中发挥关键作用。讨论了如何利用这些技术解决1998年全国大学生数学模型竞赛中的灾情巡视路线规划问题。问题核心是寻找最短且均衡的巡视路线,通过将乡镇和村庄视为图的节点,道路视为边,并赋予边适当的权重来实现。文章介绍了使用图论方法和近似算法来处理这一NP-完全问题的过程,以提高决策效率和资源利用率。
数据挖掘与数据分析灾情巡视路线规划的图论方法探讨
相关推荐
智能公交路线规划工具
这款基于 Access 数据库开发的工具,能够为您提供便捷的公交路线查询和换乘方案。其强大的算法能够根据实时数据,为您规划出最佳出行路线,助您轻松抵达目的地。
Access
9
2024-05-23
数据挖掘数据分析资料
共享数据分析学习资料,共同进步。祝学习愉快,万事顺遂!
数据挖掘
22
2024-04-29
深入理解数据挖掘与数据分析
数据分析是通过适当的统计分析方法对收集到的数据进行分析、概括和总结的过程,目的是提取有用信息支持决策。数据挖掘则通过算法从海量数据中发现隐藏的规律和知识,其目标在于挖掘数据中的重要价值。尽管二者有着明显的区别,但在现代信息技术中密切联系,共同推动着大数据时代的发展。
数据挖掘
11
2024-08-09
数据分析和数据挖掘书籍推荐
这些英文书籍是数据分析和数据挖掘领域的入门好帮手,可以帮助您快速了解相关概念。
算法与数据结构
18
2024-04-30
数据挖掘概述与方法探讨
数据挖掘概述是通过对特定数据对象进行汇总、分析和比较,以获取其内涵描述及关键特征的过程。数据特征化的结果可以采用饼图、柱状图、曲线等形式呈现,而数据区分则包括比较度量,帮助区分目标类和比较类。
数据挖掘
16
2024-07-18
灾情巡视问题的解决方案图论中的弗洛伊德算法应用详解
在“灾情巡视”问题中,我们可以将地图上的各个地点视为图的顶点,而连接这些地点的路径则作为边。弗洛伊德算法是一种解决多点间最短路径问题的经典算法,在此问题中尤为重要。通过迭代更新所有可能路径长度,该算法能够有效找出巡视员从一组地点出发,经过其他地点最后返回原点的最短路径,以最小化总行程时间和成本。压缩包内包括数据文件,程序代码和运行结果图片,这些元素共同展示了如何将图论算法应用于实际问题的过程。
算法与数据结构
11
2024-07-18
现代数据分析中的数据挖掘概念与技术
数据挖掘是现代数据分析的核心,是从海量数据中提取有价值知识的过程。其通过寻找隐藏在数据中的信息和模式,帮助企业优化决策,提升业务效率。数据挖掘的应用场景涵盖关系数据库、数据仓库、事务数据库以及高级数据库系统等多个领域。它的功能包括概念描述、关联分析、分类预测、聚类分析、局外者分析和演变分析。然而,数据挖掘面临的挑战包括数据质量、算法选择、结果解释及隐私保护等问题。数据仓库和OLAP技术在数据挖掘中扮演重要角色,支持多维数据分析和业务洞察的发现。数据预处理是确保数据质量和分析效果的关键步骤。
数据挖掘
8
2024-08-24
Datawhale数据挖掘入门数据分析技巧分享
TASK2: 数据分析来自AI蜗牛车在Datawhale数据挖掘入门教程的部分内容。主要讨论了如何利用Python的数据科学工具进行数据预处理、可视化和探索性分析。使用的工具包括pandas、numpy、scipy、matplotlib和seaborn,这些工具提供了强大的数据分析和可视化能力。文章首先介绍了如何载入数据集,并使用head()和shape属性了解数据的基本结构。接着,通过describe()函数获取数据的统计摘要,帮助读者快速理解数据的分布和异常情况。此外,info()函数用于检查数据类型和缺失值情况,而missingno库则用于可视化缺失数据模式。数据可视化阶段使用matpl
数据挖掘
16
2024-07-22
大数据分析与挖掘
第一章:数据分析基础理论- 数据分析概述- 大数据分析基础- 大数据预测分析
第二章:计算机数据分析SPSS Modeler- SPSS Modeler概述- SPSS Modeler节点介绍
第三章:计算机数据分析Hadoop- 大数据平台Hadoop
算法与数据结构
18
2024-04-30