最新实例
高效资源下载Flink Hadoop兼容库 2.7.5-10.0.jar
这个兼容库提供了Flink与Hadoop环境的无缝集成,版本号为2.7.5-10.0,提升资源下载效率。
flink
15
2024-07-19
2023年最新数据科学面试题总结
在数据科学领域,面试时常涉及到多种技术的深入理解,特别是在Hadoop、Spark、Hive和HBase等核心组件上。以下是一些可能在面试中遇到的关键知识点: Hadoop 1. HDFS(Hadoop分布式文件系统)读写流程:读取文件时,首先通过NameNode获取文件块的位置信息,然后从最近或负载较低的DataNode节点读取数据。写文件时,数据会被切分为块并复制到多个DataNode上,以实现冗余和容错。 2. HDFS故障处理:如果读取过程中某个块损坏,HDFS会自动尝试其他副本。即使DataNode挂掉,HDFS也会继续将数据块写入其他可用的DataNode,确保数据完整性。 3.
flink
13
2024-07-18
基于Flink+FlinkCDC+FlinkSQL+Clickhouse实现实时数据仓库
《基于Flink+FlinkCDC+FlinkSQL+Clickhouse构建实时数据仓库》——本课程为大数据实时数仓项目实战课程,以大数据实时数仓项目为主线,理论和实战相结合,全方位、全流程、无死角讲解数仓项目的数仓基础、项目规划、需求分析、架构设计与技术选型、大数据平台构建、项目业务介绍、数据采集、数仓建模理论、数仓设计规范、数仓搭建、实时分析以及数据大屏制作。学完本课程,零基础的学员能入行大数据仓库工程师,有开发基础的学员也能快速积累项目实战经验
flink
11
2024-07-18
Flink状态管理详解
详细讲解Flink核心实例中的状态管理机制及其代码实现。通过深入分析,揭示了Flink在大数据处理中状态管理的关键作用和应用场景。
flink
12
2024-07-18
06_实时数仓_数据可视化接口实现_V2.0.pdf
在大数据领域,数据可视化将复杂数据集转化为易于理解的图形表示,揭示数据的模式、趋势和关联性。探讨了利用Flink构建实时数仓,实现数据可视化接口,服务于数据大屏应用,如百度Sugar数据大屏。实时数仓通过Apache Flink实现数据流的实时摄取、处理和存储,保证低延迟高吞吐。案例中,Flink处理电商数据,将聚合结果存入ClickHouse,一款高性能列式数据库,适合OLAP和实时查询。设计数据可视化接口,提供即时数据查询、统计和分析服务,支持专业BI工具和数据大屏。
flink
15
2024-07-17
2020美赛数学建模C题参考思路及可用代码优化版
2020年美国数学建模竞赛中C题的参考思路及可用代码分享。
flink
18
2024-07-16
使用Flink将数据写入Elasticsearch5与Elasticsearch7的方法对比
随着Elasticsearch的发展,从5.x版本升级到7.x版本,数据写入方式发生了变化。在Elasticsearch5中,需要指定type字段,而在Elasticsearch7中移除了该字段。以下是针对Elasticsearch7的配置和代码示例:在7.x版本中,使用的是flink-connector-elasticsearch7_2.11。示例代码如下:public class Es7SinkDemo { public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = S
flink
12
2024-07-16
Flink实用指南.zip
《Flink实用指南》Apache Flink是一款开源的流处理和批处理框架,广泛应用于大数据实时处理领域。本指南帮助读者快速掌握Flink的核心概念、API使用及常见应用场景。一、Flink简介Flink是一个分布式、容错的流数据处理引擎,支持事件驱动的流处理和批处理模式。其设计理念为“连续计算”,在实时数据处理中表现卓越。Flink的流处理模型能够处理无界数据并保持低延迟,批处理则处理有界数据集。二、Flink核心概念1. DataStream:表示无限或有限数据序列的基本处理单元。2. Transformation:对DataStream进行的操作,如map、filter、keyBy等。
flink
12
2024-07-16
JAVA大数据流处理Apache Flink示例代码.zip
在大数据处理领域,Apache Flink是一款强大的开源流处理框架,专为实时数据流和批处理而设计。这个名为\"JAVA大数据流处理Apache Flink示例代码.zip\"的压缩包很可能包含了一系列用Java编写的Flink示例代码,用于演示如何在实际项目中应用Flink技术。Flink的核心特性包括事件时间处理、窗口机制、状态管理和容错能力等。事件时间处理允许用户基于事件生成的时间来计算窗口,适应处理乱序数据的需求。窗口机制支持多种类型,如滑动窗口、会话窗口和tumbling窗口,根据事件时间或系统时间进行数据流的分组和聚合。状态管理确保在处理无界数据流时维持应用程序的一致性,支持检查点
flink
15
2024-07-15
JobManager在项目执行中的角色和任务分析
1.1 在flink执行环境中,算子(Operator)的注册(声明)是一个关键步骤。1.2 程序的执行分为本地模式下的execute方法和远程模式(RemoteEnvironment)的execute方法。1.3 程序启动过程包括了整个执行链路。2. 理解flink的图结构涉及三层结构:StreamGraph的生成由StreamTransformation类代表流的转换,而JobGraph的生成是整个流程的核心。2.3 JobGraph生成源码和operator chain的逻辑是JobGraph的重要组成部分。2.4 ExecutionGraph的生成直接影响任务的最终执行过程。3. 任务
flink
10
2024-07-15