最新实例
Flink流批一体化技术架构及阿里实践
Apache Flink在创立时支持多种计算形态,包括流计算、批处理和机器学习等。阿里巴巴选择Flink作为新一代大数据引擎,并在内部版本Blink中采用SQL作为流批一体化的统一入口,针对流计算和批处理进行了优化。这种流批一体化架构在阿里的搜索离线数据处理和机器学习平台上表现出色。演讲将分享Blink在流批一体化场景中的优化及面临的挑战与解决方案。
flink
10
2024-07-14
flink流式表自定义StreamTableSource、RetractStreamSink
根据flink1.8官网文档实现了自定义StreamTableSource,并且输入流使用了kafkaStream,更贴近实际应用。官网文档内容简单且有漏洞,直接按照官网文档编写会导致运行失败。附件文档中的代码经过验证可以正常运行,同时实现了RetractStreamSink,供大家参考。
flink
18
2024-07-12
如何在flink1.12.2中使用oracle jdbc jar包
使用flink1.12.2版本时,可以通过配置oracle jdbc jar包来实现与Oracle数据库的连接。首先,需要将oracle jdbc jar包下载并放置在flink的lib目录中。然后,在flink的配置文件中添加相关的配置项,指定oracle jdbc的连接信息。这样就可以在flink中使用oracle数据库进行数据处理了。
flink
14
2024-07-12
iceberg-flink-runtime-0.12.0.jar
获取所需的iceberg jar文件,适用于Flink运行时的0.12.0版本。点击这里获取。
flink
11
2024-07-12
Apache Flink 1.16简介.pdf
Apache Flink 1.16是一个重要的大数据处理框架的版本更新,主要集中在批处理、流处理、稳定性、性能和易用性的改进上。在这个版本中,Flink提供了更多的特性和优化,使得它在大数据领域中的应用更加广泛和可靠。Flink 1.16强化了批处理的能力。它引入了SQL Gateway,实现了协议插件化,支持了多租户,并且与Hive生态高度兼容。通过Hive Server2 Protocol,Flink可以更好地与Hive集成,Hive查询的兼容性达到了94%。此外,Flink 1.16还引入了Adaptive Batch Scheduler,能够自动设置并发度以适应不同的工作负载。同时,它
flink
18
2024-07-12
基于Flink+Hudi构建企业万亿级云上实时数据湖视频教程(2021新课)
本课程帮助学员掌握在云环境中搭建和管理大规模数据湖系统的技能。通过学习,学员将深入了解大数据生态系统中的关键组件,如Flink、Spark、Hadoop等,并能够应用这些技术处理实际业务场景中的数据需求。课程涵盖Flink的API编写、窗口设置、状态管理,确保数据的准确性和一致性。Hudi作为数据湖存储层,支持实时查询和更新,学员将学习如何使用Hudi维护数据一致性,提升查询性能。课程还包括Spark在批处理和交互式查询中的应用,以及与Flink协同工作,实现混合处理模式。此外,学员将了解数据湖的分层架构、数据生命周期管理、数据安全和隐私保护,以及在AWS、Azure上的部署方法。
flink
18
2024-07-12
20190629Apache Flink Meetup北京站.zip
20190629Apache Flink Meetup北京站.zip是关于Apache Flink技术交流活动的压缩文件,日期为2019年6月29日,地点在北京。文件内容可能包含演讲稿、幻灯片、录音或参会者的交流资料,主要围绕Apache Flink这一开源流处理框架展开。描述非常简洁,直接点明了这是一个与Apache Flink相关的Meetup活动,发生在2019年6月29日的北京。Meetup通常是指技术爱好者或专业人士聚集在一起讨论特定主题的线下活动,因此我们可以预期这个压缩包中的内容可能涵盖Flink的最新发展、应用案例、技术深度解析等。标签“flink”明确了这个压缩包的核心内容是
flink
21
2024-07-12
doris-0.15(已编译)
《Doris 0.15:深度解析与应用指南》Doris,全称为Apache Doris,是一款基于MPP架构的高性能、实时分析型数据库。它以极致的查询速度、出色的数据加载性能以及广泛的数据源支持,赢得了广大数据分析师和工程师的青睐。将深入探讨“Doris 0.15”这一新版本的特点、优势以及如何实现“开箱即用”,为用户提供详尽的使用指导。
一、Doris 0.15新特性解析
性能提升:Doris 0.15在查询性能上做了显著优化,通过改进查询计划和执行引擎,使得复杂查询的响应时间大幅缩短,提高了大数据分析的效率。
高可用性增强:新版本强化了故障恢复机制,增强了节点间的数据同步,确保在节
flink
16
2024-07-12
大数据之Flink.docx
Flink是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算。它被设计在所有常见的集群环境中运行,以内存执行速度和任意规模来执行计算。Flink起源于Stratosphere项目,Stratosphere是在2010~2014年由3所地处柏林的大学和欧洲的一些其他的大学共同进行的研究项目,2014年4月Stratosphere的代码被复制并捐赠给了Apache软件基金会,参加这个孵化项目的初始成员是Stratosphere系统的核心开发人员,2014年12月,Flink一跃成为Apache软件基金会的顶级项目。Flink的重要特点包括事件驱动型、流与批的世界观、分层API等。事件
flink
17
2024-07-12
数据可视化大屏源码展示
数据可视化是将复杂的数据集转换为易于理解的图形或图像的技术,在大数据分析领域具有重要作用。本资源提供了一套数据可视化大屏的源码,包含20个不同的示例,适用于各种场景需求。用户下载后可以运行index.html文件进行预览,体验这些可视化效果。HTML是网页开发的基础语言,负责构建网页结构。在数据可视化大屏源码中,HTML文件通常包含基本布局和元素引用,如JavaScript库和CSS样式表,用于展示图表和其他可视化组件。前端技术在实现数据可视化中至关重要,通常涉及JavaScript,这种编程语言广泛应用于网页动态交互。开发者可能使用了D3.js、ECharts、Highcharts等流行的J
flink
9
2024-07-12